Dynamics of particulate organic carbon transfer to the ocean: a source to sink perspective

Valier Galy – Woods Hole Oceanographic Institution

OVE OCEANOGRAPHIC

INSTI

The short term C cycle: sensitivity of the atmospheric reservoir

Continental processes of OC recycling

Terrestrial OC is affected by several exchange process on its way to the ocean Consequences for C budget and OC based environmental reconstructions

Sediment flux to the Ocean

Milliman and Farnsworth, 2011

POC flux to the Ocean: large tropical systems & SMRI

Large Rivers: the depth sampling approach

Depth variations of POC concentration and composition

Galy et al., 2007 nature Galy et al., 2008 GCA

Depth integrated POC concentration

The ¹⁴C jumble

Petrogenic C is ¹⁴C dead whereas biospheric C has some ¹⁴C ¹⁴C = clock for biospheric C ($t_{1/2}$ = 5730 yrs) Using bulk ¹⁴C data of depth profile sediments

Sediments with same amount of petrogenic C and same age of biospheric C plot on linear trends

Residence time of biospheric C in the G-B system

Galy & Eglinton, Nature geosciences, 2011

Residence time of biospheric C in the Amazon basin

Fairly long residence time in the Amazon floodplain as well!

Residence time of biospheric C in the Mississippi basin

After Wakeham et al., 2009

Using Fm & δ^{13} C of bulk OC

3 end members mixing model

Biospheric OC export in the Mackenzie River

Hilton et al., in prep

Programmed Temperature Pyrolysis (aka dirt burner)

An approach to resolution of components of refractory mixtures

Narayani River

Rosenheim & Galy, in review

Complex mixture of components w/ different thermal reactivity Corresponding variability of age spectrum (100 to 30000 yrs!)

Mississippi River

Roe & Rosenheim, accepted

Gaussian deconvolution

Rosenheim & Galy, in review

Comparing Narayani and Mississippi Rivers

Rosenheim & Galy, in review

SMRI example: Taiwan

Taiwan: tectonic context

Fast convergence = high relief and fast physical erosion

Taiwan: a strong climate forcing

Hurricane pathway and intensity

OC export during extreme events: typhoon Mindulle

OC export during typhoon Mindulle

Hilton et al., Nature Geo., 2008

OC export during typhoons

Water discharge

 (Q_w, m³ s⁻¹)
 positively
 correlated with
 non-fossil POC
 load.

 Strong climate control on POC transfer Overall significance of typhoons: a climate control of OC export

Large typhoons account for most of biospheric C export in Taiwan Climate controls OC cycling

OC residence time: insights from isotopic analysis of biomarkers

 δ^{13} C: source δ D: aridity proxy

 Δ^{14} C: residence time

Global Rivers Observatory Network

Spatial coverage

Latitudinal variation of terrestrial OC residence time

Latitudinal variation of terrestrial OC residence time

Residence time and environmental proxies: a climatic control

Eglinton & al., in prep

components characterized by contrasted age and reactivity. These components play contrasted role in the C cycle.

2)Isotopic methods allow disentangling this complex mixture (i.e. quantify and characterize each components)

3)Climate exerts a first order control on the dynamics of POC export to the ocean, both in large tropical rivers and in SMRI

Acknowledgments

T. Eglinton, B. Peucker-Ehrenbrink, B. Rosenheim, C. France-Lanord, J. Gaillardet, R. Hilton, A. Galy, O. Beyssac, T. Bianchi, C. Rabouille, M. Goni, R. M. Holmes, J. Zhang, Y. Wu, NOSAMS staff, C. Johnson, S. Sylva, D. Montlucon and many others!!

OCE - Chemical Oceanography Emerging Topics in Biogeochemical Cycles

and thank you for your attention!

Testing the end member mixing model

End member	δ ¹³ C _{or} ց‰	F _{mod}	C _{org} %
Modern POC	-26.7	1.0	30
Aged POC	-25.7	0.2	10
Fossil POC (Mac & Liard)	-27.2	0	0.4
Fossil POC (Peel & Red)	-27.2	0	0.9

Hilton et al., in prep

Vascular plants biomarkers are much younger than bulk biospheric C

Residence time of the vegetation component is not homogenous at the basin scale Presence of a refractory component with longer residence time than bulk biospheric C

Old component residence time ≈ 15 ka

Composition of the refractory component: lignin?

"fresh" vegetal matter – good correlation between lignin and FA

¹⁴C composition of lignin phenols

Decadal residence time – good correlation between lignin and FA

Thermal selectivity

Galy & Rosenheim, unpublished

Transition between labile and refractory components at ca. 400° C?

Is old refractory biospheric C ubiquitous?

Fate of OC delivered during typhoons to the ocean

 $\begin{array}{c|c} \rho_{f} & = \\ Hypopycnal flow \\ \rho_{f} < \rho_{w} \\ \rho_{w} \\ Hyperpycnal flow \\ \rho_{f} & \rho_{f} > \rho_{w} \\ \end{array}$ sediment-laden | flow expanding into receiving water body channelized flow |

- Lack of well developed floodplain and shelf
- Hyperpycnal flow
- Direct transfer of OC to the deep sea
- High burial efficiency

A climatic control

