Equilibrium or kinetics: What controls the distribution of Fe isotopes in the global ocean?

Seth John

University of South Carolina

Tim Conway, Brandi Revels, Angela Rosenberg

MARINE TRACE ELEMENT LABORATORY at SOUTH CAROLINA

Consider a phytoplankter the size of two 53' intermodal freight containers

Model predicted ultimate-limiting nutrient

Small Phytoplankton Nutrient Limitation

What happens if you add more nutrients to the ocean?

Forcing

2x increase in riverine NO₃⁻ flux
2x increase in riverine PO₄³⁻ flux
2x increase in gyre upwelling
2x increase in HNLC Fe flux

Possible sources of iron to the ocean

Dust

Porewater Fe(II)

"Non-reductive" dissolution

Hydrothermal vents

Fe stable isotopes

US GEOTRACES: Analysis of Fe, Zn, and Cd isotopes in seawater

- Low blanks.
- 2-3 hours per sample.
- No isotope fractionation during processing.

US GEOTRACES sample processing

GEOTRACES NAZT Fe, Cd, Zn isotope profiles

Project goal: Use δ^{56} Fe to calculate Fe sources to the N. Atl.

Dust $\delta^{56} Fe_{dust} = +0.1 \%$ $\delta^{56} Fe_{input} = +0.7 \% (??)$

"Non-reductive" dissolution $\delta^{56}Fe_{sediments} = +0.1 \%$ $\delta^{56}Fe_{input} = +0.3 \%$ (??)

Porewater Fe(II) δ^{56} Fe_{porewater} = -2-3 ‰ δ^{56} Fe_{input} = -2-3 ‰

Hydrothermal vents δ^{56} Fe_{fluids} = -0.5 - 0 ‰ δ^{56} Fe_{input} = -1.5 ‰ (??)

What constitutes a "source" of Fe to the oceans?

Jeffery Cornwall.

"Reductive dissolution" (porewater Fe(II))

"Non-reductive" dissolution

Hydrothermal vents

If you add Fe to the ocean, but it doesn't increase the iron concentration in seawater... was it ever really there?

Published Fe isotope profiles

Flux of reduced Fe into the San Pedro Basin water column

BATS

San Pedro Basin

Comparing approaches to predicting Fe and $\delta^{\rm 56}{\rm Fe}$ fluxes

Iron in the ocean is bound to organic ligands

Rue and Bruland, 1995

Large variations in nephloid layer dissolved δ^{56} Fe, little change in [Fe].

Iron exchange between particles and the dissolved phase

Published Fe isotope profiles

Non-reductive dissolution and Fe isotopes in the Eastern Pacific

Dissolved δ^{56} Fe after non-reductive sedimentary interactions

A 1000 m nephloid layer is present near Bermuda

A very "typical" North Atlantic Fe isotope profile

"Rapid" exchange of Fe within the nephloid layer

Published Fe isotope profiles

Southern Ocean Fe isotopes

Lacan et al., EPSL, 2008.

North Atlantic GEOTRACES particulate Fe isotopes

Conclusions

- Iron inputs to the ocean impact the global carbon cycle
- δ^{56} Fe shows "sources" of marine Fe which do not necessarily lead to an increase in dissolved Fe concentrations.
- This hilights the importance of iron isotope exchange between particles and ligands.
- Equilibrium plays an important role in marine Fe biogeochemical cycling.