BATS and HOT, 25 years of incredible
productivity! CARIACO 18 years!

What should we focus on for the
next 25 years?

Ken Johnson
Monterey Bay Aquarium Research Institute



Net community production, carbon

export and nutrient supply at ocean

time series sites. Should we expect
consensus? Should fluxes agree?

Ken Johnson
Monterey Bay Aquarium Research Institute
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Overarching goal — convince OCB community that we need a
systematic assessment of major carbon fluxes (NCP, Export, ...) at time
series station (HOT, BATS, CARIACO, ESTOC, Papa).

* Perhaps an OCB working group?

e How do methods compare?

I’ll argue that time series stations need to make quantitative
observations of major carbon fluxes over time.
* Are sediment traps at 150 m good enough?
 Methods should be intercomparable.
* Time series stations should serve as a benchmark for more
expandable systems.

Ultimately we need global, carbon observing systems.

But first a little time series history!
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HOT-1 Cruise Report
R/V Moana Wave
29 Oct. - 3 Nov. 1988

Narrative:

HOT-1 was the shakedown cruise of the HOT program, much of the
equipment had never been used, and there were some equipment failures.
One conductivity cell and the General Oceanics rosette pylon failed. In
addition, there were problems with the winch level-wind mechanism, and
with the slip-rings. The Kahe Point station was abandoned because of
these problems.

The sediment traps were tracked using ARGOS for two days after
deployment, but we lost contact with them a few hours before they were
due to be retrieved, and despite a 16-hour search, they were not

found.
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Bermuda Biological Station For Research, Inc.
U.S. JGOFS Bermuda Atlantic Time-series Study

Cruise Report, BATS 1

Cruise dates: October 20, 1988 - October 21, 1988
Personnel: - A.H. Knap, R.L. Sherriff-Dow, P. Wassmann, R. Johnson.

R.V. Weatherbird

Cast 1 on deck at 0200.
Wire kinked. Decide not to put CTD back down.
Lat: 31.160 N; Long: 64.500 W
Nominal depths: 2000,2200,2400,2600,2800,3000,3200,3400,3600,3800,4000,
4200 m.
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HOT-253: Chief Scientist Report
Chief Scientist: Susan Curless

R/V Kilo Moana

June 24-28, 2013

FOT-253: Chied Scientist Repeort
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Investigator
Matt Church
Dave Karl

Bob Bidigare
John Dore
Roger Lukas
Mike Landry
Ricardo Letelier

Ancillary programs:
Andrew Dickson

Paul Quay

Matt Church &
Ricardo Letelier

Sam Wilson

Donn Viviani
Sara Thomas
Adina Paytan

Christopher Schvarez

Erica Goetze

Irina Shilova. Brandon
Carter. Matt Mills., and
Zbigniew Kolber

Scott Turn

Stu Goldberg

Project Institution

Core Biogeochemistry

Biogeochemistry QA/QC
Hydrography
Zooplankton dynamics

Optical measurements

CO; dynamies and intercalibration
DIPC

Diversity and activities of nitrogen-fixing
MiCroorganisms

Reduced gases in the upper ocean: The cyeling of
methane. sulfide and nitrous oxide

Bacterial production and EOC at Station ALOHA
Chemolithoautotroph experiment
O natural abundance

Viral Dynamies at Station ALOHA and surface water
collection for virus and phytoplankton culturing

Temporal stability of copepod populations at Station
ATLOHA

Phytoplankton responses to different nitrogen sources
in the North Pacific Subtropical Gyre

Storage Stability of Next Generation Biofuels

Nutrient and DOC cyeling experiment
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Matt Church presentation, OCB Time Series Workshop

What’s HOT?
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Program objectives:

o Quantify time-dependent variability in key physical,
biogeochemical, and ecological properties and processes

o0 Define relationships between plankton community
structure and biogeochemical dynamics

o Quantify physical and biological processes controlling
oceanic carbon uptake, transformation, and sequestration
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HOT —Dore et al., PNAS 2009
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BATS

Biogeosciences, 9, 2509-2522, 2012 www.biogeosciences.net/9/2509/2012/
Bates et al.
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SANTANA-CASIANO ET AL.: CO, VARIABILITY AT THE ESTOC SITE
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M.J. Church et al. / Deep-Sea Research Il 1 (mm) nm-ma

HOT
150

-

N

o
|

-

(=4

o
|

Primary production
(mmol C m?d™)
3 o
| |

N
(3
|

0 B ENES ANES BN RS AN ENE

Particulate carbon export
(mmol C m?d™)

0 TV I1SI0I0ITITITICITITT?
88909294 9698000204060810
Year

BATS CARIACO
150 600
125 : 500 —
100 — 400 -
75 — 300 —
50 — 200 —
25 100
0 0 TTTT T T[T T[T rJrg s
10 25
8_.
6_
4_
2_.
0 fryryryryrypryryrypryprgd 0 Trrrypeyrryprprprprpryprpt
889092949698 000204060810 889092949698 000204060810
Year Year



2o
o
v
-
O
X
3
-
O
A,
-
O
O
SN’
vp)
T
<
an
+—
O
v
=
£
o
-
S
=
™
o)
X
E
. §
SN
O
@
/)

70

&l .
1 & 1




DOC Dynamics at BATS Response of specific
bacterioplankton lineages
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Sea Change: Charting the Course for Ecological and Biogeochemical Ocean Time-series Research
q BERMUDA OCE Scoping Workshop, University of Hawaii, September 21-23, 2010
g 5

Michael W. Lomas

BATS/ Original Motivation and Objectives/

The Bermuda Atlantic Time-series Study (BATS) was initiated under the
JGOFS umbrella with the overall motivation...

“ To determine and understand the time-varying fluxes of
carbon and associated biogenic elements in the ocean and to
evaluate the related exchanges with the atmosphere, sea floor

and continental boundaries .” (SCOR, 1987)

Original Objectives:

¢ To understand the seasonal and interannual variations in ocean physics,
chemistry and biology

¢ To understand the processes that control surface pCO,
e To understand the physical controls on biological rate processes

e To provide a test-bed for the validation of new methods and technologies



Steve Emerson, 2012 OCB Summer Workshop

HOW WELL DO WE KNOW THE ANNUALLY-AVERAGED
NET COMMUNITY PRODUCTION?

Measurements at Time-Series Locations

Can You Explain the
The Mass Balance-
Sediment Trap
Difference by DOC
Export and Trap
Depth?

NCP Annual Average (mol C m2 yr?)
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Net Community Production (NCP) = Primary Prod. — Respiration at all
trophic levels (Net production of C = C export on an annual basis)
NCP estimates near HOT to base of euphotic zone

Method NCP (mol C m~2y?) Ref.

POC Flux 1.1+0.3 Karl et al. 1995

DI*3C mass balance 1.6+0.9 Emerson et al. 1997
Sum of C fluxes 2.0+£0.9 Emerson et al. 1997

O, utilization rates 2.2+0.5 Sonnerup et al. 1999
O,, Ar, N, mass balance 2.7+1.7 Emerson et al. 1997
234Th C flux 2.7+0.9 Benitez-Nelson etal. 1995
DIC, DI*3C & model 2.7+1.3 Quay & Stutsman 2003
DIC & model 2.8+0.8 Keeling et al., 2004
Moored O, sensor 4.0+2.0 Emerson et al., 2008
O,/Ar 5.0£1.0 Quay et al., 2010
MEAN 2.710.6 (90% Cl)

19 Years of Prof. Float O,

3.4+0.4 (90% Cl)



Matt Church, OCB Time Series Workshop
Net Community Production at Station ALOHA

Rate Period of
Method mol Cm=2yr! | measurements References

Mixed Laver 1.4-3.7(£ 1.0) 1002—-2008 Emerson et al. (1997);
O, + Ar budgets Hamme and Emerson
(2006); Juanek and Quay

(2005); Quay et al. (2010)

DIC + DI*3C budgets 2.7-2.8(+1.4) 1988-2002 Quay and Stutsman (2003);
Keeling et al. (2004)

Mooring O, 4.1(x1.8) 2005 Emerson et al. (2008)

Sub-mixed layer 1.1-1.7 (+0.2) 2003-2010 Riser and Johnson (2008)

float profiles

Sub-mixed laver 0.9(x0.1) 2005 Nicholson et al. (2008)

glider survevs

Sediment traps 1080—-20090 HOT core data

Invitro O, 2001, 2005-2007  Williams et al. (2004)

incubations

NCP appears constrained to ~2-fold variability
GPP estimated ~20-fold greater than NCP



What Is the Metabolic State
of the Oligotrophic Ocean?
A Debate

Hugh W. Ducklow! and Scott C. Doney?

"The Ecosystems Center, N
email: hducklow@mbl.edu

?Department of Marine Ch The Oligo trophic Ocean
Woods Hole, Massachusett i .
Is Autotrophic*

Annu. Rev. Mar. Sci1. 2013. 5

Peter J. le B. Williams,! Paul D. Quay,’
Toby K. Westberry,> and Michael J. Behrenfeld?

1School of Ocean Sciences, Bangor University, Mena:
United Kingdom; email: pjlw@bangor.ac.uk

2School of Oceanography, University of Washington, Th e O li go tro phi C O cean
*Department of Botany and Plant Pathology, Oregon .
Is Heterotrophic*

Oregon 97331-2902

Carlos M. Duarte,'? Aurore Regaudie-de-Gioux,*

Jestis M. Arrieta,! Antonio Delgado-Huertas,’
and Susana Agusti'-%?

!Department of Global Change Research, Mediterranean Institute of Advanced Studies,
CSIC-UIB, 07190 Esporles, Spain; email: carlosduarte@imedea.uib-csic.es

2Oceans Institute and *School of Plant Biology, University of Western Australia,
Crawley 6009, Australia

*Spanish Oceanographic Institute, 33213 Gijén, Spain
3Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR, 18100 Armilla, Spain



IMPLICATIONS AND UNRESOLVED ISSUES
There are two key implications of our conclusions.

* A bias toward net heterotrophy in the in vitro O,-
based measurements calls into question whether
the same issues exist for other in vitro
measurements (i.e., 1*C and >N measurements)

* Net autotrophy....raises issues regarding sources of
nutrients supporting positive NCP.

Peter J. le B. Williams,! Paul D. Quay,?
Toby K. Westberry,’ and Michael J. Behrenfeld’



GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 14, NO. 4, PAGES 1231-1246, DECEMBER 2000

Temperature effects on export production in the open ocean

Edward A. Laws,' Paul G. Falkowski,” Walker O. Smith Jr.,* Hugh Ducklow,’
and James J. McCarthy*
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from Karl et al.
Chap. 10in
Fasham, “Ocean
Biogeochemistry”
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10.5.2 Case Study 2:
A ‘Bermuda Triangle’ Carbon Mystery
with Global Implications

The continued disappearance of salinity normalized
dissolved inorganic carbon (N-DIC) in the absence of
nitrate was first reported by Michaels et al. (1994). They
reasoned that if nitrate was added by episodic wind
mixing or mesoscale eddy motions, the nitrate would be
delivered along with DIC, so simple enhancements of
nitrate-supported new and export production could not
be responsible for the repeatable summertime N-DIC

* from Karl et al. Chap. 10 in Fasham, “Ocean
Biogeochemistry”



Siegel et al., JGR 104, 1999

Annual Flux Annual Flux
mol N m-2 y-1 mol C m-2 y-1

NCP 0.50 3.3
Total N Flux 0.51 3.4
Eddy pumping 0.18 1.2
Winter Convection 0.17 1.1
Isopycnal Diffusion 0.03 0.2
Large-scale Ekman 0.03 0.2
pumping

Atmospheric Dep. 0.03 0.2

Diapycnal Diffusion 0.015 0.1



Carbon is at or above Redfield, relative to nitrate, at the base
of the euphotic zone. Upward transport of sufficient nitrate
also brings carbon and there is no annual drawdown
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Why do we care about getting C and
nutrient fluxes right???

‘Wdige® | MBARI Chemical
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GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 15, 1809, doi:10.1029/2003GL016889,

e Numerous studies point

to climate and changing
Ocean primary production and climate: Global decadal changes
OCean phytopla n kton/ Watson W. Gregg

L e L Laboratory for Hydrospheric Processes, NASA/Goddard Space Flight Center, USA
productivity links. o
[1] Satellite-in situ blended ocean chlorophyll records

indicate that global ocean annual primary production has

declined more than 6% since the early 1980’s. Nearly 70% of

the global decadal decline occurred in the high latitudes. In
e Trend detection based e s e o

primarily on remote sensing LETTERS
and results can be opposite

to in situ time series Climate-driven trends in contemporary
. ocean productivity
O bse rvat I O n S Michael J. Behrenfeld’, Robert T. O'Malley', David A. Siegel®, Charles R. McClain®, Jorge L. Sarmiento®,

Gene C. Feldman®, Allen J. Milligan', Paul G. Falkowski®, Ricardo M. Letelier’ & Emmanuel S. Boss”

Vol 466|29 July 2010/ doi:10.1038/nature0 9268 nature

e Need bio-chemical ARTICLES

sensors to directly sense Global phytoplankton decline over the past
change in carbon cycle. century

Daniel G. Boyce', Marlon R. Lewis® & Boris Worm'

In the oceans, ubiquitous microscopic phototrophs (phytoplankton) account for approximately half the production of organic
matter on Earth. Analyses of satellite-derived phytoplankton concentration (available since 1979) have suggested
decadal-scale fluctuations linked to climate forcing, but the length of this record is insufficient to resolve longer-term trends.

Hava wia ramhina suvailahla araan trancnavancu mascivamante and in citu rhlavanhull Ahcarvuatiane +a actimata tha tima



NPP (mg C m2 day?)

SABA ET AL.: MODELING MARINE PRIMARY PRODUCTIVITY
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Mean 3D Biogeochemical model error for estimates of Net
Primary Production at HOT

= log (Model
NPP/Obsd. NPP)

1006 =0.27

Model-data misfit [log(m)-log(d)]

0.6 1
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1.2 1
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GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 24, GB3020, doi:10.1029/2009GB003655, 2010

Challenges of modeling depth-integrated marine primary productivity
over multiple decades: A case study at BATS and HOT

Vincent S. Saba,'* Marjorie A. M. Friedrichs,! Mary-Elena Carr,” David Antoine,”

& 39 others



Time Series Represented at OCB
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pH can be measured robustly using lon Sensitive Field Effect
Transistors (Martz et al., L&O Methods, 2010). If you have pH,
Dissolved Inorganic Carbon can be estimated to about 8 umol/kg
pH (total) 25 C DIC (umol kg™
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1. We need global scale,
guantitative, autonomous
observing systems for carbon.

2. We need to know time varying

ensure calibration of a global
system carbon observing system.
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Fluxes (mol m2 y-1)

Fluxes (mol m=2 y-1)

~a BERMUDA: BATS

Entrainment

Horizontal transport

Diffusion

Air-sea gas exchange

Jan Mar May Jul Sep Nov

Fig. 8.3.11 Sarmiento & Gruber

HAWAII: HOT
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The real question is, how do phytoplankton manage positive net growth with

no apparent N in the system. Redfield requires C/N of 106/16 =6.6
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(A) Temp (°C) (B) Irradiance (mol quanta m2d’)

2008 2009 2010 2008 2009 2010

Fig. 2. Contour plots of temperature (A), photosynthetically active radiation (PAR) (B), nitrate+nitrite (N+N) concentrations (C), and Chl a (D) in the upper 150 m at
Station ALOHA during this study (October 2007-December 2009).

Variability of chromophytic phytoplankton in the North Pacific
Subtropical Gyre

Binglin Li ?, David M. Karl?, Ricardo M. Letelier ®, Robert R. Bidigare €, Matthew J. Church®*



HOT — nutrient supply Church
BATS — C drawdown mechamisms — Lomas

Bats — DOC/link to microbiology.....



142 D. M. Karl and R. Lukas

The objectives of HOT specific to the JGOFS program are to:

— document and understand seasonal and interannual variability in the rates of primary
production, new production and particle export from the surface ocean,;

— determine the mechanisms and rates of nutrient input and recycling, especially for N
and P in the upper 200 m of the water column;

— measure the time-varying concentrations of carbon dioxide in the upper water
column and estimate the annual air-to-sea gas flux.



Lomas et al (2013)

e Document the seasonal, interannual and decadal scale
variability in carbon and macronutrient cycle parameters
and processes.

* Including,for example, an understanding of the controls on
the coupling/decoupling (relative to the Redfield ratio) of
elemental cycles.

* Document variability in planktonic community structure and
function, and its impact on the ocean’s carbon cycle
(including new and export production) and coupling with
other macronutrient cycles.
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Physical and biogeochemical modulation of ocean
acidification in the central North Pacific

John E. Dore#1, Roger Lukas®, Daniel W. Sadlert, Matthew J. Church®, and David M. Karlb1
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M.J. Church et al. / Deep-Sea Research I (nm1) mi-am
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Sea Change: Charting the Co ochemi n Time-series Research
OCB Scoping Workshop, Univ awaii, Septam!
Michael W. Lomas
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On an annual scale, eddies appear to ‘average out’ their impact on biogeochemistry.

Mourino-Carballido 2009
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Plankton community structure plays a key role in carbon flux to the deep sea



2 10/03/2012
0-
200}
400}
600}
= =
= < 800¢ < 800}
L. O o
- 0 1000} 0O 1000}
‘a1 “\b
. 1200t 1200}
: 1400} 1400}
1600} 1600¢
—3 72 74 76 78 8 0 100 200
= | pH Total 25 C Oxygen uM

- L — - A



OCB time series success is a reflection of open
data access policy

Publ. Interval | Number _

HOT 1990-2012 549
BATS 1988-2012 480
CARIACO 1996-2012 89*
Total 1118

*Publications by CARIACO Pl’s only.
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Matt Church, OCB Time Series Workshop
Net Community Production at Station ALOHA

Rate Period of
Method mol Cm=2yr! | measurements References

Mixed Laver 1.4-3.7(£ 1.0) 1002—-2008 Emerson et al. (1997);
O, + Ar budgets Hamme and Emerson
(2006); Juanek and Quay

(2005); Quay et al. (2010)

DIC + DI*3C budgets 2.7-2.8(+1.4) 1988-2002 Quay and Stutsman (2003);
Keeling et al. (2004)

Mooring O, 4.1(x1.8) 2005 Emerson et al. (2008)

Sub-mixed layer 1.1-1.7 (+0.2) 2003-2010 Riser and Johnson (2008)

float profiles

Sub-mixed laver 0.9(x0.1) 2005 Nicholson et al. (2008)

glider survevs

Sediment traps 1080—-20090 HOT core data

Invitro O, 2001, 2005-2007  Williams et al. (2004)

incubations

NCP appears constrained to ~2-fold variability
GPP estimated ~20-fold greater than NCP



