Global ocean uptake and storage of anthropogenic carbon estimated using transit-time distributions

Samar Khatiwala

Lamont-Doherty Earth Observatory of Columbia University

Collaborators: Tim Hall (NASA/GISS) and Francois Primeau (UCI)

Sources and sinks of anthropogenic carbon (in PgC/y)

- Total emissions (1800-1994): 340-420 PgC
- Increase in atmosphere: 165 PgC
- Balance taken up by the ocean and land biosphere

Principal Goal

Reconstruct the history of anthropogenic carbon in the ocean over the industrial period

Motivation:

Insights into physical mechanisms driving ocean uptake
Evaluation and improvement of forward biogeochemical models to more accurately predict future uptake

Anthropogenic carbon and its trend are much harder to discern in the ocean than in the atmosphere

- Anthropogenic carbon is not directly measurable
- The anthropogenic signal in the ocean (△DIC) is only a few percent of the (unknown) natural background of dissolved inorganic carbon (DIC)
- Carbon in the ocean participates in complex in-situ biogeochemistry
- Due to long transport timescales the ∆DIC concentration in the ocean is highly heterogeneous

"Back-calculation" methods (e.g., " Δ C* method") for inferring Δ DIC attempt to separate the small anthropogenic component from the large background

Basic idea (Brewer, 1978; Chen and Millero, 1979; Gruber *et al.*, 1996): Δ DIC can be estimated by correcting measured DIC for changes due to biological activity

 $\Delta DIC = DIC_{meas} - \delta DIC_{bio} - \delta DIC_{diseq} + \dots$

Assumptions:

Stoichiometric (Redfield) ratios are known and constant

Transport is dominated by advection ("weak mixing")

Air-sea disequilibrium of CO₂ has remained roughly constant

Fundamental limitation: can only provide an estimate for the 1990's

Different back-calculation methods for estimating \DIC in the ocean give quantitatively different results

Integrated inventories differ on average by 20% between different methods

Transient tracers such as CFCs are conventionally used to estimate a surface-to-interior transit time. But this implicitly assumes that transport is purely advective.

(Holzer and Hall, 2000; Khatiwala et al, 2001)

Observational evidence and numerical models both suggests that TTDs are broad, implying strong mixing

Tracer observations

Explicit numerical simulation of TTD

(Hall et al, 2004)

Simulated in 1° data assimilated (ECCO) model using the *transport matrix method* (Khatiwala, 2007)

Neglecting mixing introduces a positive bias in the \triangle DIC estimate at shallow and intermediate depths and a negative bias in deep waters

Assuming constant disequilibrium introduces a positive bias of O(10-20%) in estimated \triangle DIC

 $DIC_{surface}(t) = DIC_{equilib}(pCO_2^{atmos}(t), T, S, Alk) + \delta DIC_{air-sea disequilib}(t)$

The Transit-time Distribution (TTD) Method

The basic ideas underlying the TTD approach:

- ADIC can be treated as a conservative tracer
- Ocean transport can be characterized by a TTD
- Ocean circulation is in steady state

$$\Delta \text{DIC}(\mathbf{x}, t) = \sum_{i} \int_{1780}^{t} \Delta \text{DIC}_{\text{surf}}(t'; \partial \mathcal{D}_{i}) \mathcal{G}(\mathbf{x}, t - t'; \partial \mathcal{D}_{i}) dt'$$

To apply this, we need two pieces of information:

- The transit time distribution G, and
- The surface history of anthropogenic carbon, ΔDIC_{surf}

To estimate G, we use measurements of transient and steady state tracers along with their known surface history

$$C_{\text{meas}}(\mathbf{x},t) = \sum_{i} \int_{-\infty}^{t} C_{\text{surf}}(t';\partial \mathcal{D}_{i}) e^{-\lambda(t-t')} \mathcal{G}(\mathbf{x},t-t';\partial \mathcal{D}_{i}) dt'$$

This is an underdetermined deconvolution problem! We regularize it using a Bayesian ("maximum entropy") approach.

Minimize the cost functional (subject to the data constraints):

$$J[\mathcal{G}] = -\sum_{i} \int \mathcal{G}(\mathbf{x}, t'; \partial \mathcal{D}_{i}) \log \frac{\mathcal{G}(\mathbf{x}, t'; \partial \mathcal{D}_{i})}{\mathcal{H}(\mathbf{x}, t'; \partial \mathcal{D}_{i})} dt'$$

(e.g., Tarantola, 2006; Primeau, 2007)

The variational problem has the following solution:

$\mathcal{G}(\mathbf{x},t;\partial\mathcal{D}_i) = \mathcal{H}(\mathbf{x},t;\partial\mathcal{D}_i)e^{-\sum_j \alpha_j(\mathbf{x})C_{\text{surf}}^j(t_j-t;\partial\mathcal{D}_i)e^{-\lambda_j t}}$

To determine the unknown surface \triangle DIC history, we equate the instantaneous net air-sea flux of \triangle DIC to the rate of change in its inventory:

$$\sum_{i} A_{i} F_{i}^{\text{air-sea}}(t) = \frac{d}{dt} \iiint_{\text{ocean}} \Delta \text{DIC}(x', t) d^{3}x'$$

$$F_{i}^{\text{air-sea}}(t) = -k_{i} \left[\Delta p \text{CO}_{2}(t)_{i} - \Delta p \text{CO}_{2}^{\text{atm}}(t) \right]$$
$$= -k_{i} \Delta \delta p \text{CO}_{2}(t)_{i}$$
$$\approx -k_{i} \epsilon_{i} \Delta p \text{CO}_{2}^{\text{atm}}(t)$$

Computing the inventory:

$$\Delta \text{DIC}(\mathbf{x}, t) = \sum_{i} \int_{1780}^{t} \Delta \text{DIC}_{\text{surf}}(t'; \partial \mathcal{D}_{i}) \mathcal{G}(\mathbf{x}, t - t'; \partial \mathcal{D}_{i}) dt'$$

 $\Delta \text{DIC}_{\text{surf}}(t; \partial \mathcal{D}_i) \equiv \text{DIC}_{\text{surf}}(t)_i - \text{DIC}_{\text{surf}}(1780)_i$

 $= f(pCO_2(t)_i) - f(pCO_2(1780)_i)$

 $\approx f \left(p CO_2(1780)_i + (1 + \epsilon_i) \Delta p CO_2^{\text{atm}}(t) \right) - f \left(p CO_2(1780)_i \right)$

f represents carbonate chemistry: DIC = f(pCO₂,T,S,Alk,...)

 $pCO_2(1780)_i \approx pCO_2(T_{obs})_i - (1 + \epsilon_i)\Delta pCO_2^{atm}(T_{obs})$

Finally, solve the nonlinear problem for the unknown \mathcal{E}_i using least-squares

$$\mathbf{M}(\epsilon) = \mathbf{0}$$

Verification of TTD method in an Ocean GCM

- Simulate anthropogenic carbon, CFCs, ¹⁴C in a global ocean model to evaluate the TTD methodology
- MIT biogeochemical model: fully prognostic and includes representations of both the solubility and biological pumps
- The TTD method is applied to synthetic tracer "observations" simulated in the model to invert for the anthropogenic carbon uptake

Simulated and inferred column inventory of **ADIC**

- Largest differences (O(5 mol/m²)) in Southern Ocean
- Total simulated inventory (in 1995): 123.7 PgC
- Total inventory from inversion: 127.6 PgC
- Total inventory assuming constant disequilibrium: 145.8 PgC

Application to data from the GLobal Ocean Data Analysis Project (GLODAP)

- GLODAP is a database of tracer measurements made during the WOCE period (1990's)
- Includes CFCs, carbon, ¹⁴C, O₂, nutrients, etc
- TTD method is applied to CFC-11, CFC-12, ¹⁴C, "PO₄*", temperature, and salinity data
 - Estimate G and ΔDIC_{surf}
 - Prior \mathcal{H} from analytical solution to 1-d advection-diffusion
 - Convolve ΔDIC_{surf} with G to predict interior ΔDIC

Column inventory of anthropogenic carbon over the industrial period

Anthropogenic carbon uptake history 1765-2005

TTD-based global ocean uptake (1980's-1990's): 1.7-2.1 PgC/y
Atmospheric O₂/N₂ ratio: 1.9 ± 0.6 (Manning and Keeling, 2006)
Air-sea pCO₂ difference: 2.0 ± 60% (Takahashi et al, 2002)

• Air-sea ¹³C disequilibrium: 1.5 ± 0.9 (Gruber and Keeling, 2001)

Comparison of inventory with ΔC^* method (1994)

• TTD method total inventory: $126.2 \pm 14 \text{ PgC}$

• ΔC^* method (Sabine et al, 2004) total inventory: 106 ± 21 PgC

• The methods tend to agree in the upper ocean, but disagree in the intermediate and deep ocean

• ΔC^* method tends to overestimate in the upper ocean and underestimate in the deep ocean

Summary and Conclusions

- Tracer-constrained TTDs have been used to reconstruct the history of anthropogenic carbon in the ocean
- TTD-derived inventory of anthropogenic carbon in the ocean (in 1994) is 126.2 \pm 14 PgC
- In contrast, the ΔC^* method gives an inventory of 106 ± 21 PgC
- Substantial differences in spatial distribution of △DIC between TTD and △C* estimates
- Global uptake of 1.7-2.1 PgC/y during 1980's-1990's

Unresolved Issues and Future Directions

- Error analysis
- Improved prior \mathcal{H} (from ECCO simulations)
- Accounting for seasonal cycle
- Comparison of regional fluxes with atmospheric inversions
- Evaluation of forward biogeochemical models
- Use inversion as initial conditions for eddy-resolving biogeochemical simulations