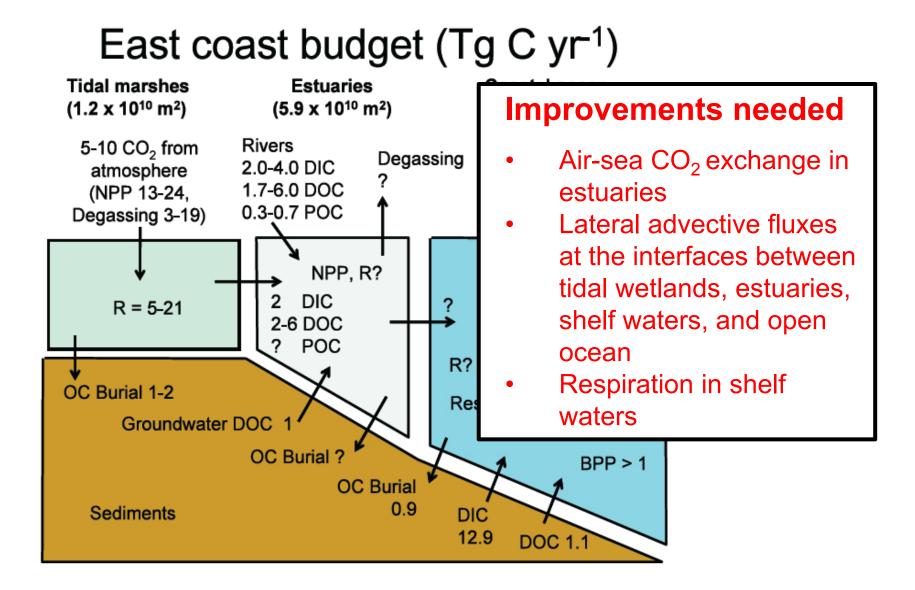

A Timeline of Coastal Carbon Synthesis Activities

- > 2005: The North American Continental Margins Workshop
- Spring 2008: OCB Scoping Workshop Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico
- Summer 2008: The birth of the NACP/OCB Interim Coastal Synthesis Activities (with funding acquired from NASA and NSF in 2010-11)
- 2010: Kickoff Coastal Synthesis Workshop
- > 2012: The East Coast Carbon Cycle Synthesis Workshop
- > 2013: Gulf of Mexico Carbon Cycle Synthesis Workshop
- ➤2014: Summer Culminating Workshop

East Coast Carbon Cycle Synthesis Workshop

Leads: Marjy Friedrichs (VIMS), Ray Najjar (PSU), Wei-Jun Cai (UDel) January 19-20, 2012 (Gloucester Point, VA)


Sub-regions

- 1. Gulf of Maine
- 2. Mid-Atlantic Bight
- 3. South Atlantic Bight

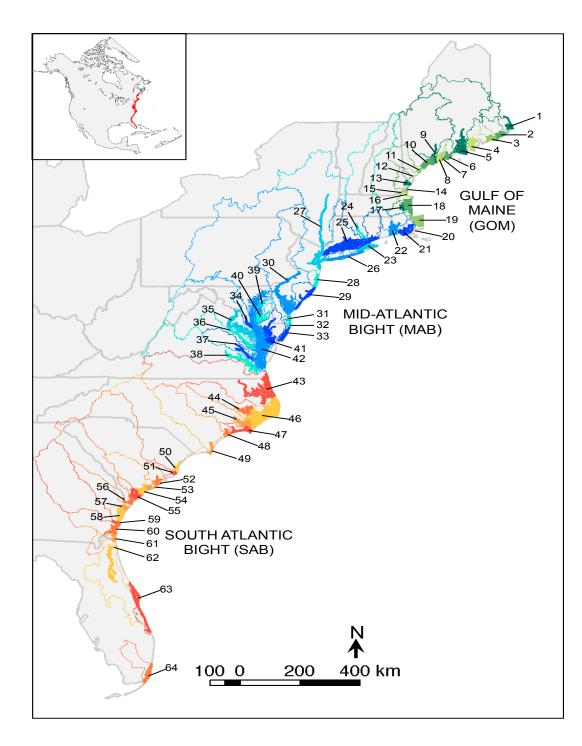
Flux Teams

- Riverine input
- Estuarine fluxes
- Tidal wetland fluxes
- Air-sea exchange
- Sediment-water exchange
- Exchange at the ocean boundary
- Primary production
- Respiration and NCP

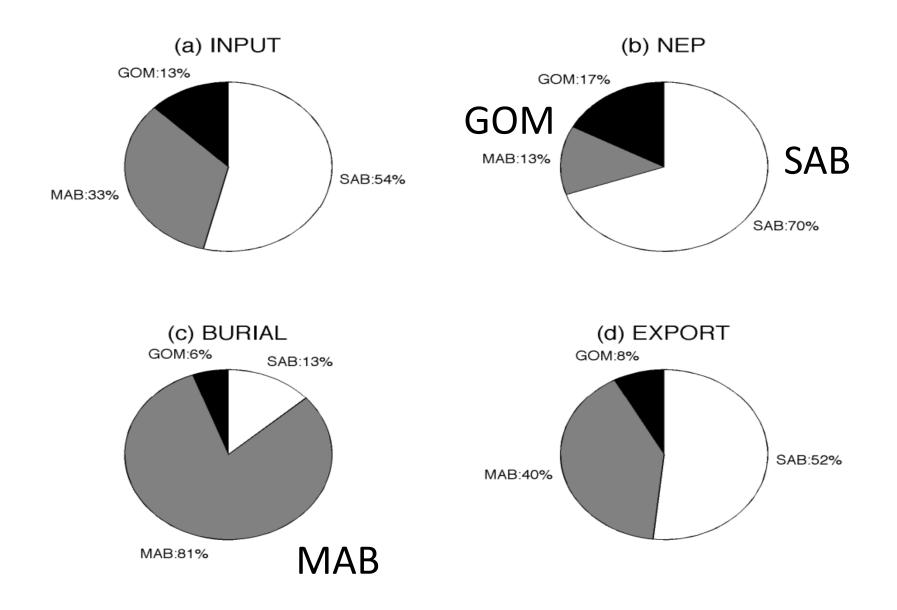
Revised East Coast Carbon Budget

Net ecosystem production and organic carbon balance of U.S. East Coast estuaries

Maria Herrmann, Raymond G. Najjar, W. Michael Kemp, Richard B. Alexander, Elizabeth W. Boyer, Wei-Jun Cai, Peter C. Griffith, S. Leigh McCallister, Richard Smith


(submitted)

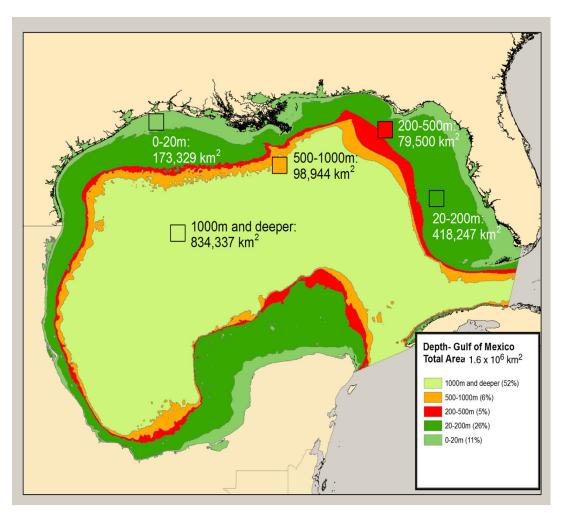
Modelling approach to carbon budget in estuaries:


(to be replicated for Gulf of Mexico)

- relate NEP to riverine loading of DIN:TOC
- relate carbon burial to water residence time
- use SPARROW water quality model to constrain land inputs of OC

• shelf export of OC from difference, assuming steady state.

•54 watersheds•Divided into 3 regions



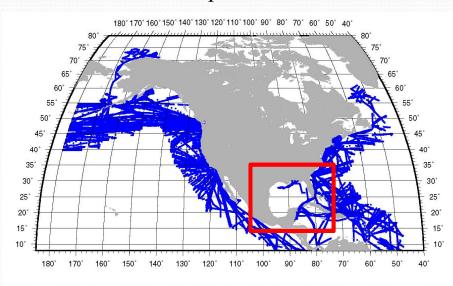
Conclusions

- East Coast estuaries are net heterotrophic
- NEP ~ -1.78 Tg C yr-1
- Area-normalized NEP increases with riverine loading of DIN:TOC
- U.S. East Coast estuarine systems assimilate over 70% of riverine inputs of organic carbon, and allow only about 30% to be exported out to the shelf region.

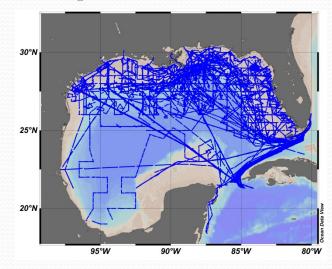
Gulf of Mexico Carbon Cycle Synthesis Workshop

Leads: Paula Coble (USF) and Lisa Robbins (USGS) March 27-28, 2013 (St. Petersburg, FL)

Sub-regions


- 1. 4 coastal regions
- 2. Open Gulf region

Flux Teams


- Riverine input
- Fluxes in estuaries, sediment water exchange
- Air-sea fluxes
- Cross shelf flux
- Primary production
- Respiration and NCP
- Submarine groundwater discharge

pCO₂ air-sea flux data

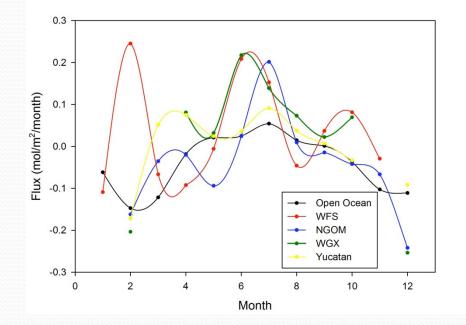
Takahashi, 2009 Data up to 2007

Locations where pCO_2 data were obtained around North America as presented in the SOCCR report (Chavez et al., 2007). Note the lack of data in the Gulf of Mexico. Our newly compiled data, up to 2012


• Over 375+K data points

- Years 1996-2012
- 196 cruises, (more to be added shortly)
- Combined result of Ships of Opportunity and dedicated research cruises

Gulf of Mexico Coastal Carbon Synthesis March 27-28, 2013 Saint Petersburg, FL


Flux Monthly Variability

The Gulf is a sink with a Net Annual Flux of -0.19 mol C/m²/year (-3.57 Tg C/year)

Net Annual Flux: +0.21 mol C/m2/year

-2 cruises -summer data

Net Annual Flux (including coastal regions): - 0.19 mol C/m²/year

Gulf of Mexico Coastal Carbon Synthesis March 27-28, 2013 Saint Petersburg, FL

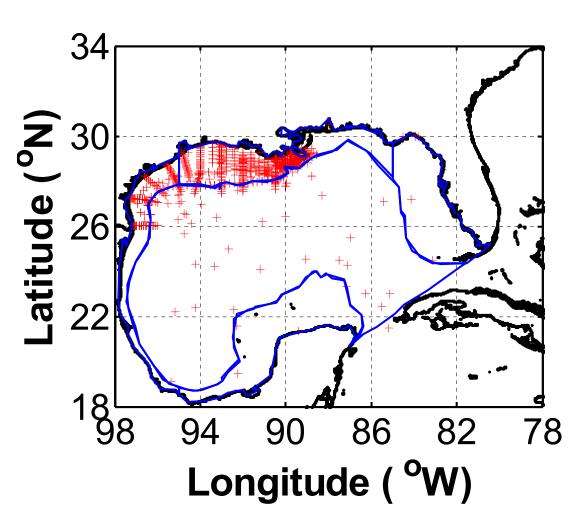
pCO2 Flux Calculations

pCO2

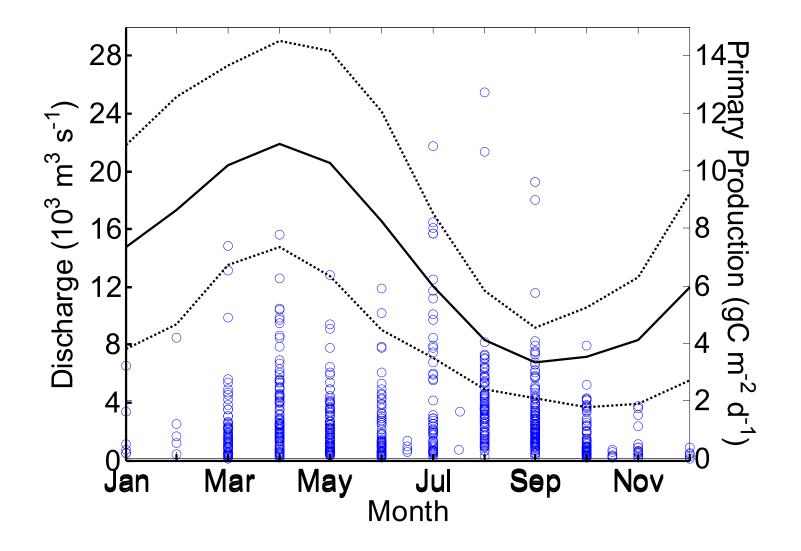
	Flux					
	(molC/m²y)	std	wind source	∆pCO2	Max ΔpCO2 Min ΔpCO2	Ν
WFS	0.37	0.11	CCMP monthly avg	16.90	963.80 -240.83	>35K
Northern GOM	-0.44	0.37	CCMP monthly avg	-5.01	2423.51 -333.17	~95K
Western Gulf	0.18	0.05	CCMP monthly avg	18.83	121.04 -115.39	>10K
Mexico- Yucat	an -0.09	0.05	CCMP monthly avg	18.30	390.18 -236.5	~8K
Open GOM	-0.48	0.07	CCMP monthly avg	3.22	407.82 -306.76	>150K
Total	-0.19	0.08	CCMP monthly avg			>300K

Wind product used: CCMP monthly average, binned to 1x1° grid in region 1 (open ocean) and 0.5x0.5° grid in coastal areas (regions 2-5).

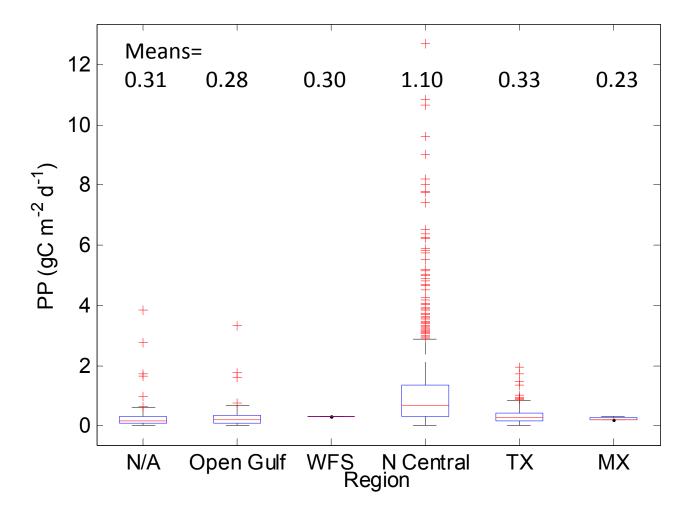
 $F=K_0k\Delta pCO_2$; k=0.251 <u^2>(Sc/660)^{-0.5}


Gulf of Mexico Coastal Carbon Synthesis March 27-28, 2013 Saint Petersburg, FL

Primary Productivity Measurement Types

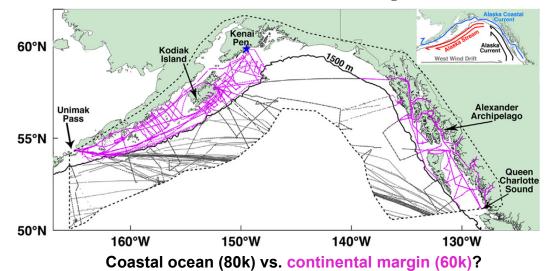

- ¹⁴C-based primary production estimates bottle incubations
- Oxygen-based primary production estimates
- Other (¹³C, ¹⁸O, etc.) few of these in the Gulf
- Satellite-derived primary production estimates
- Ecosystem models of primary production
- Benthic primary production

Primary Production from Ship-based Studies


- Mainly concentrated in the north central Gulf
- More data available on the WFS?

Gulf Productivity by Month

Gulf Productivity by Region



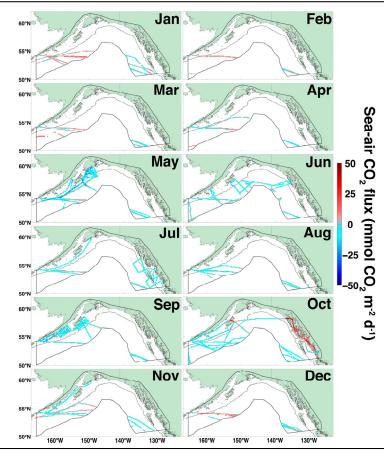
Gulf of Mexico Status

- DIC data are on the wiki, other data will follow
- Draft report nearly complete
- Expect final version release Fall 2013
- Plans to extend East Coast estuary model to Gulf of Mexico

The Gulf of Alaska coastal ocean as an atmospheric CO₂ sink

Wiley Evans and Jeremy T. Mathis, 2013, CSR, 65, 52-63

Compiled dataset of direct surface pCO₂ observations


Month	Coasta	l ocean $F_{\rm CO_2(aw)}$ Continental margin $F_{\rm CO_2(aw)}$
January	3.5	SA = $30 \times 10^{11} \text{ m}^2$ 3.2 SA = $8 \times 10^{11} \text{ m}^2$
February	3.4	3.3
March	2.0	-0.1
April	-0.4	-2.2
May	-10.0	-13.0
June	-5.2	-12.0
July	-5.1	-7.0
August	-4.4	-8.7
September	-10.4	-12.5
October	-2.1	3.2
November	-3.0	-6.1
December	1.9	4.6
Annual mean	-2.5	→ 36 Tg yr ⁻¹ –4.0 → 14 Tg yr ⁻¹

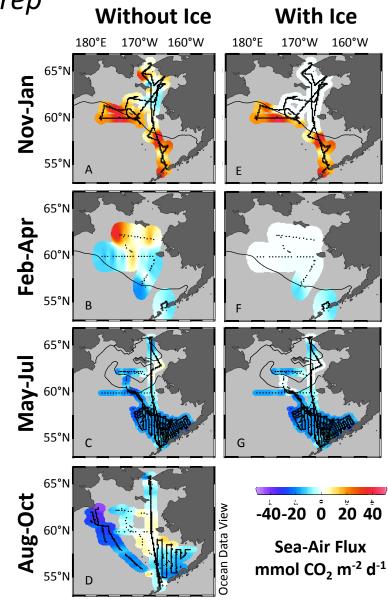
Monthly area-weighted sea-air CO2 fluxes (mmol m⁻² d⁻¹)

Annual mean fluxes scaled to SA = difference in CO₂ uptake

Sea-air CO₂ flux climatologies:

- (1) Reconstructed atmospheric pCO₂
- (2) Calculated monthly climatologies of ΔpCO_2 , SST, salinity, pCO_2 solubility on 0.1° by 0.1° grid
- (3) Couple with monthly wind data from Scatterometer Climatology of Ocean Winds (SCOW; Risien and Chelton, 2008)

Large GOA coastal ocean CO₂ uptake impacts the flux estimate from the North American coastal ocean (Chavez et al., 2007). An updated synthesis is needed.


Bering Sea CO₂ Synthesis, 2008-2012

Cross, J.N., Mathis, J.T., Frey, K.E., Danielson, S., and Evans, W.M.,

2013. GRL, in prep

- Recent use of underway pCO₂ systems has enabled best spatiotemporal data coverage ever available in this region: underway record + surface CTD samples = data for full shelf during open water and ice-covered seasons
- Assuming ice cover completely prohibits sea-air exchange, accounting for ice cover increased the size of the annual Bering Sea CO₂ sink by ~26.3% by blocking CO₂ efflux from the ocean surface layer Nov-Apr
- Annual shelf-wide CO₂ flux: ~-9.4 Tg C yr⁻¹

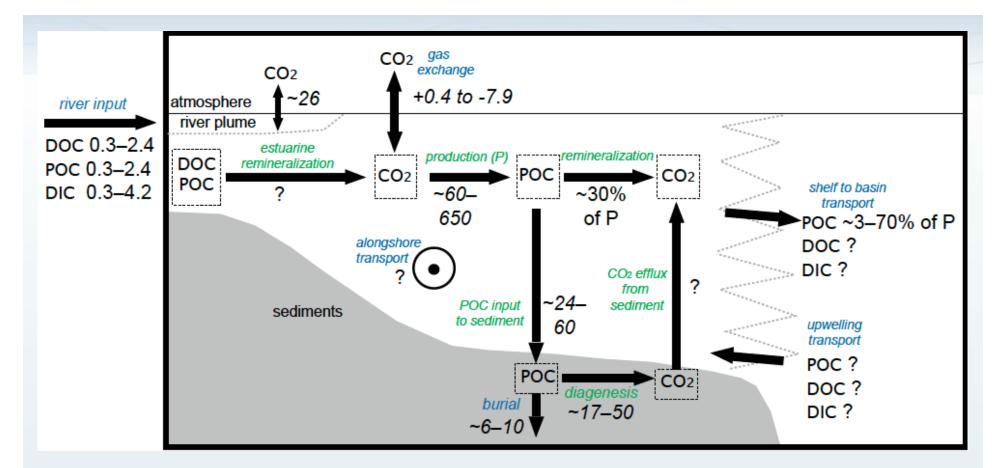
-	Study	Bering Sea annual flux (Tg C yr ⁻¹)	
Model	Walsh and Dieterle (1994)	3.4	
Data Synthesis	Chen and Borges	11	from Bates , 2011
Climatolc	Tahahashi et al. (2009)	37	, 2011
Production Season Data	This study	157 ± 35	
Production Season Data	Chen et al. (2004)	200	

West Coast

Longest coastline on N. America

North Pacific Current

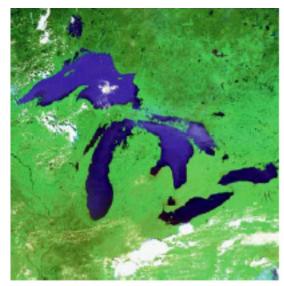
Alaska Strea


GOA

NCC

CAI

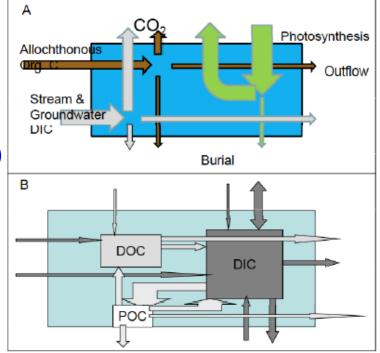
Panama


- 4 sub-regions (Gulf of Alaska, northern & southern California Current System, Central American Isthmus) – lots of participants
- Preliminary budget results in Winter Foundation
 2012 OCB Newsletter

Synopsis of preliminary budget

- Preliminary budget spans all four sub-regions.
- Best known fluxes are air-sea flux and terrestrial inputs.
- Least constrained fluxes appear to be remineralization, crossshelf transport, and carbon metabolism in estuaries.
- Work on-going to fill in the many gaps in preliminary budget.

Laurentian Great Lakes


• Leader: Galen McKinley

• <u>Sub-regions</u>: Progress to date mostly in Lake Superior (most well developed data-modeling approaches)

• <u>Status</u>: To be developed opportunistically as funding allows

Great Lakes Carbon Budget Summary

- CO₂ source = 0.1-10s Tg C/yr (wide range based on model and literature-based estimates)
- Key unknowns: NPP, R (mean values and spatial distribution), surface pCO₂ (temporal evolution)
- Priorities: Surface pCO₂, more winter observations, satellite algorithm development

McKinley et al. 2011; Urban et al. (in prep)

A Timeline of Coastal Carbon Synthesis Activities

For reports, data, and updates:

http://coastalcarbon.pbworks.com/w/page/15143273/FrontPage

Acknowledgements

- A cast of thousands (actually, hundreds of coastal carbon researchers)
- Funding from NASA and NSF
- Support from OCB and NACP Program Offices