Multiple stressors in coastal ocean
environments — rethinking the impact of
ocean acidification
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Fig. 1. Schematic of human impacts on ocean biogeochemistry either directly via fluxes of material into
the ocean (colored arrows) or indirectly via climate change and altered ocean circulation (black arrows).
The gray arrows denote the interconnections among ocean biogeochemical dynamics. Note that many

ocean processes are affected by multiple stressors, and the synergistic effects of human perturbations is a
key area for further research.




Coastal ocean stressors—

Temperature stress
— Global warming; local extreme weather

Salinity stress
— Tidal cycle; reduced or increased freshwater input

River end-member increase

Nutrient stress
— Fertilizer use (NO,); sewage discharge (NH,)

(low) O, stress
CO, (high and low) stress
More frequent storm



Ocean acidification (m_ﬂcoastal waters?)
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Latitude

Examples of acidification and low O,
events in coastal waters

Within and under eutrophic river plumes

Major upwelling
impacted waters
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Acidification and low O, events in coastal waters--1.

At an eastern boundary current shelf

— dominated by upwelling of open ocean subsurface water
with low temp, low [O,], low pH, low €2, and high
pCO,/DIC on to the shelf (Feely et al. 2008, Science)
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Acidification and low O, events in coastal waters--2.

Juan de Fuca-Hood Canal, Feb. 2008
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Acidification and low O, events in coastal waters—3.
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Acidification and low O, events in coastal waters—S5.

* Eutrophication-hypoxia is not only a serious regional
stressor, it is also
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Acidification and low O, events in coastal water--5.
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Subsurface water pH and [O,] relationship
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Subsurface water pH and [O,] relationship
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(CH,0),,¢(NH5)H,PO, + 138 O, >
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How do anthropogenic CO

, and

CO, from respiration interact?
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Respiratory CO,-driven acidification is
enhanced by anthropogenic CO,,
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Weakening of buffer capacity in CO,-

ApH/ADICx100
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Impact on carbonate saturation state
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* with the same hypoxia level, by year 2100, large
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Responses of ocean CO, system to multiple
stresses: from first principles

e Salinity

* Temperature

* River-Ocean mixing

* Metabolic CO, consumption and release
* N cycle (NO; and NH,)

 More frequent storm



A simple model

--examining the impact of respiration on pH, pCO, and €2
under various conditions (T, S, ...)

* Initial partial pressure (pCO, and p0O,) is set by the
atmosphere

* Alk is known
— River end-member = 1.0 mmol/kg
— Ocean end-member = 2.3 mmol/kg

 Bottom water is no longer in contact with the
atmosphere

* Metabolic processes follows the Redfield CN ratio...
(CH,0),0(NH;)H,PO, + 1380, =
106CO, + 16HNO, + H,PO, + 122H,0



Effects of T & S on respiratory-driven CO, acidification
(over a complete consumption of O,)
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Effects of T & S on respiratory driven CO, acidification
(over a complete consumption of O,)
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Effects of T & S on respiratory driven CO, acidification
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Will increasing Atm-P.,, amplify or suppress
respiratory-CO, acidification (ApHg)?
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ApH/ADICx100

What is so magic about this point of
max-ApHg?
Where the system has minimum buffering capacity

A point where DIC = TA or [CO,] = [CO,*]+ B(OH)
[CO,] + [HCO5T] + [CO,7] = [HCOZ] + 2[CO;%] + B(OH)
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How can a storm make bottom waters even
more acidic?
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Possible impacts on the marine nitrogen cycle
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Enhanced denitrification?
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Summary

Respiration often plays a more important role in
acidifying coastal bottom waters today, but

Anthropogenic CO, uptake from the atmosphere
will play an increasingly important role in
acidifying coastal bottom waters.

There is a strong enhancement of acidification in
CO,-enriched waters, and such effects vary greatly
with salinity and temperature, with a greater
effect in low T and S water (decreasing) and a
smaller effect in high T and S water (increasing).

Storm on pH and N cycle...



Ocean Stress Guide

What the ocean will experience this century without urgent and substantial
reduction in greenhouse gas emissions.

Stressor

Warming

® A relatively mature
study area in terms
of physical
changes and
physiology but
poorly studied
at ecosystem and
biogeochemical
level

Causes

® Increasing
greenhouse gas
emissions to the
atmosphere

Result

® Temperature
increase,
particularly in near-
surface waters

® Less ocean mixing
due to increased
stratification

® Increased run-off
and sea-ice melt
will also contribute
to stratification in
Arctic waters

Direct effects

® Decreased carbon dioxide
solubility

® Increased speed of
chemical and biological
processes

® Reduced natural nutrient
re-supply in more
stratified waters

Impacts

@ Stress to organism physiology,
including coral bleaching

® Extensive migration of species

® More rapid turnover of organic
matter

® Nutrient stress for
phytoplankton, particularly in
warm waters

® Changes to biodiversity, food
webs and productivity, with
potential consequences for
fisheries, coastal protection
and tourism

Feedback to climate

® Reduced ocean uptake of carbon
dioxide due to solubility effect

@ Increased oxygen consumption,
carbon dioxide production and
decrease in oxygen transfer to the
deep ocean

® Potential decrease in the export of
carbon to the ocean'’s interior

® Decreasing productivity except in
the Arctic

Acidification

® Developed as a
research topic in
past decade

® Increasing
atmospheric carbon
dioxide emissions

® Coastal nutrient
enrichment,
methane hydrates
and acid gases from
industrial emissions
may also contribute
locally

® Unprecedented
rapid change to
ocean carbonate
chemistry

® Much of the ocean
will become
corrosive to shelled
animals and corals,
with effects
starting in the
Arctic by 2020

® Reduced calcification,
growth and reproduction
rates in many species

® Changes to the carbon
and nitrogen composition
of organic material

® Impeded shell or skeletal
growth and physiological stress
in many species, including
juvenile stages

@ Change to biodiversity and
ecosystems, and the goods and
services they provide

® Cold and upwelling waters
currently supporting key
fisheries and aquaculture likely
to be especially vulnerable

® Reduced ocean uptake of carbon
dioxide due to chemical effects

@ Changes to the export of carbon to
the ocean's interior

® Higher oxygen use throughout
the water column due to changing
composition of organic material

Deoxygenation
@ Emerging issue,
poorly studied

® Reduced oxygen
solubility due to
warming

® Decreased oxygen
supply to the ocean
interior due to less
mixing

® Nutrient rich land
run-off stimulating
oxygen removal
locally

® Less oxygen
available for
respiration
especially in
productive regions,
and in the ocean
interior

® Extended areas
of low and very low
oxygen

® Reduced growth and
activity of zooplankton,
fish and other oxygen-
using organisms

® Stress to oxygen-using
organisms

® Risk of species loss in low
oxygen areas

@ Shift to low oxygen-
tolerant organisms, especially
microorganisms and loss of
ecosystem services in
these areas

® Enhanced production of the two
greenhouse gases methane and
nitrous oxide

All three together
® Few studies

@ Increasing
greenhouse gas
emissions,
especially carbon
dioxide, to the
atmosphere

@® More frequent
occurrence of
waters that will
not only be warmer
but also have
higher acidity and
less oxygen
content

® Damage to organism
physiology, energy
balance, shell formation:
e.g. coral reef degradation

® Ocean acidification can reduce
organisms’ thermal tolerance,
increasing the impact of
warming

® Combined effects further
increase risk to food security
and industries depending on
healthy and productive marine
ecosystems

@ Major change to ocean physics,
chemistry and ecosystems

® Risk of multiple positive feedbacks
to atmosphere, increasing the rate
of future climate change
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