Terrestrial carbon and nutrient fluxes and the biogeochemical responses in the Mississippi River plume and Northern Gulf of Mexico

> Wei-Jun Cai The University of Georgia Department of Marine Sciences Athens, GA, USA

Ocean Carbon & Biogeochemistry

Studying marine biogeochemical cycles and associated ecosystems in the face of environmental change

Science Workshop, July 21-24, 2008, Woods Hole, MA, USA

Acknowledgement

Co-authors & contributors Xianghui Guo, Wei-Jen Huang, Yongchen Wang Steve Lohrenz---USM Michael Murrell---EPA Rik Wanninkhof and T.H. Peng---NOAA-AOML Minhan Dai---Xiamen Univ., China Funding NASA— (2005-2008) NOAA— (2005-2008) NSF—Chemical Oceanography (2008-2010)

outline

 River delivery of C and nutrients to coastal oceans

- Global flux
- Mississippi River flux
- The effect of river loading on coastal metabolism
 Biogeochemical responses in the river plume and
 - nearby areas
 - Nutrient behavior
 - Biological production
 - Control on the CO₂ system

Carbon budget in the Northern Gulf of Mexico

Global river delivery of C and nutrients to coastal oceans

8 Niger 4 Mississippi 16 Lena 5 St Lawrence 9 Lake Chad Basin 17 Kolyma 10 Congo

11 Nile 12 Zambezi 26 Orange 24 Euphrates and Tigris

South America

6 Amazon

7 Paraná

- 15 Yenisey
- 18 Amur
- 19 Ganges and Brahmaputra
- 20 Yangtze
- 21 Murray Darling
- 22 Huang He
- 23 Indus

Source: United Nations Environment Programme (UNEP); World Conservation Monitoring Centre (WCMC); World Resources Institute (WRI); American Association for the Advancement of Science (AAAS); Atlas of Population and Environment, 2001

Global riverine C, N, and P flux

C, N and P inputs from land to the global coastal ocean (10 ¹² mol/yr)						
ltem	Meybeck	NEWS-model	Smith et al.	Adopted	ratio	
	1982&1993	2005	2003	here		
DIC	32		LOICZ	33.9	C:N	21
DIN	0.52	1.8	1.35	1.5	N:P	30
DIP	0.03	0.03	0.07	0.05	0.05 C:P	
(Smith & Hollibaugh, 1993)						
DOC	20.5	14	17	18	C:N	26
DON	0.85	0.71		0.7	N:P	35
DOP	0.027	0.019		0.02	C:P	900
PIC	14			14		
POC	18.2		17	18	C:N	6
PON	2.9			2.9	N:P	5
PP(Inorg)	0.6			0.6	C:P	30
Total C	84.7			83.9	C:N	16
Total N	4.3			5.1	N:P	8
Total P	0.65			0.67	C:P	121
autotrophic loading based on DIN input and Redfield ratio 10						
assuming 50% of DIN will be denitrified in coastal zone 5						5
assuming 80% of DIN will be denitrified					2	
heterotrophic loading						
assuming xx% of land OC is respired in coastal ocean 0.70						25
N recyled					3	
net heterotophic loading						(23)

DIC flux ~ TOC flux

Heterotrophic loading >> auto...

Table 2.1 Carbon Fluxes and Reservoirs Relevant to RiOMar Systems

	C flux (Tg/yr	Range) (Tg C yr ¹)	Reference
Total Riverine Carbon Input to the Ocean		700-1000	
Dissolved Inorganic Carbon (DIC)	400	381-410	1,2,3
Total Organic Carbon (TOC)	450	200-530	2,3,4,5
Particulate Organic Carbon (POC)	200	138-288	4,6,7
Dissolved Organic Carbon (DOC)	250	214-360	2,4,8,9,10
Terrestrial Storage		600-1500	11
Burial in Marine Sediments	130	98-138	5,12,13
Terrestrial		43-104	5,12
Marine		55	5,14

¹Meybeck, 1993 ²Meybeck and Vörösmarty, 1999 ³Degens et al., 1991 ⁴Spitzy and Ittekkot, 1991 ⁵Schlunz and Schneider, 2000 ⁶Lyons et al., 2002 (and references within) ⁷Ittekkot and Laane, 1991 ⁸Spitzy and Leenheer, 1991
⁹Aitkenhead and McDowell, 2000
¹⁰Hedges et al, 1997
¹¹Stallard, 1998
¹²Berner, 1982
¹³Hedges and Keil, 1995
¹⁴Berger et al., 1989

RiOMar 2001 report, (B. McKee et al.)

Contrast in organic C input

deliver more heterotrophic loading to low-lat margins

Compiled by M. Dai and W-J. Cai; also see Borges papers

DIN flux in world's major rivers

Source: Dagg et al. 2004

Speculate: River loading drives tropical margins towards heterotrophic, and mid lat margins to autotrophic.

Distribution of riverine HCO₃⁻ & Si flux

From Cai et al. 2008 *Continental Shelf Research* 28:1538-1549.

Latitudinal distribution in HCO₃ flux
 CaCO₃ minerals in drainage basin
 Contrast to silicate flux

Cai unpublished

Distribution of riverine HCO³⁻ concentration

Maximum shifted to higher latitude as a result of precipitation pattern

From Cai et al. 2008 *Continental Shelf Research* 28:1538-1549.

Influence on TAlk distr in Ocean Margins

Mississippi River flux

Largest river basin in North America and third largest in the world Drainage basin encompasses 41% of the lower 48 United States

Table 7.8.1. Average concentrations and annual fluxes of organic and inorganic C, N, and P delivered to the Gulf of Mexico by the Mississippi-Atchafalaya River System (MARS) (in 10^{12} g y⁻¹ or Tg y⁻¹). Total water discharge is 530×10^9 m³y⁻¹. TSM stands for total suspended matter.

Chemical	Concentration	Annual Flux	Reference
	(mM)	Tg y ⁻¹	
TSM		210 ^{\$}	Meade and Parker (1985)
POC	1.6% of TSM	3.4	Trefry et al. (1994)
		1.2*	Duan and Bianchi 2006
DOC	0.28	1.8	Trefry et al. (1994)
	0.33	2.1	Benner and Opsahl 2001
	0.49	3.1	Bianchi et al. 2004
PIC	0.15% of TSM	0.31	Trefry et al. (1994)
DIC	0.219	21*	Cai (2003)
TAlk	0.216	21*	Cai (2003);
			Raymond and Cole (2003)
Total Nitrogen (N)		1.57	Goolsby et al. (1999)
$NO_3 + NO_2$		0.95	Goolsby et al. (1999);
			Howarth et al. (1996)
Ammonium		0.03	Goolsby et al. (1999)
Dissolved Org. N		0.38	Goolsby et al. (1999)
Particulate Org. N		0.20	Goolsby et al. (1999)
Particulate Org. N		0.45 ⁺	Trefry et al. (1994)
Total Phosphorus (P)		0.136	Goolsby et al. (1999)
PO ₄		0.042	Goolsby et al. (1999)
Particulate P		0.095	Goolsby et al. (1999)
Si-dissolved		2.32	Goolsby et al. (1999)

1. DIC>>TOC

2. Heterotrophic loading ~ autotrophic loading

3. Disparate time scales

Cai and Lohrenz (2008) in KK Liu et al book.

Biogeochemical responses in the river plume and nearby area — biological production

Satellite evidence points towards linkages between high chlorophyll and river outflow

Relationship Between River Inputs and Coastal Ecosystem Properties

3 May 2004

Satellite evidence points towards linkages between high chlorophyll and river outflow

Relationship Between River Inputs and Coastal Ecosystem Properties

 Relationship between river DIN flux and satellite-derived chlorophyll

Source: Lohrenz et al. (2008)

Biogeochemical responses – nutrients and CO₂ system

The high nutrient loading and the short turnover time contribute to a strong biological pump for carbon uptake in the mid-field

pCO₂ distribution

Salinity (spring & summer)

-300

500

400

200

100

500

400

300

200

100

-88

-88

-88

-89

-89

-89

Salinity explains some 400 but not all features

1. Inside river channels 200 & embayment, low S 100 high pCO_2 (turbidity)

2. In the plume, low S -300 low pCO_2 (bio uptake)

salinity

pCO

3. Variability

Mississippi River plume, June 2003

1. Great DIC removal & nutrient removal at S=15. No TA removal. 3. At S=15, $max \Delta DIC \sim 430$ uM. Appling a Redfield ratio of 6.6, we would predict a max NO₃ removal of 65 uM.

Mississippi River plume, August 2004

 Δ DIC = 320 uM, Δ TA=210 uM DIC removal due to OC = 320 - 210/2 = 215 uM Predicted NO₃ removal = 33 uM

DIC and TAlk in the Mississippi River plume

Net community production (NCP) & net calcification

Mixing layer depth and water residence time taken from Green et al. (2006)

evidence of coccolithophores

Significance of potential coccolith bloom in the Miss R plume

• It increases pCO_2 (opposite to diatom) 2HCO₃⁻ + Ca²⁺ \rightarrow CO₂ + CaCO₃

 Diatom bloom creates a low pCO₂, high pH & high CO₃²⁻ condition for coccolith bloom (ecosystem succession)

 No such response reported in the Amazon plume. Why? (ecosystem shift under anthropogenic pressure)

pCO₂ in the Amazon plume

Cooley et al. GBC : 21, GB3014, doi:10.1029/2006GB002831, 2007

pCO₂ in the Changjiang plume

 pCO_2 in the East China Sea in summer 1998 during the great flood period (Results from the Chinese JGOFS, L. Zhang pers. comm.)

pCO₂ in the Pearl River plume

Dai et al. CSR (2008)

Carbon budget in the Northern GOM

18 atm CO ₂ asin process River input	Turbidity plume CO ₂ (0	.2?)	N.GOM † ?	
DIN =1.0 → DIC =21	PP=5.7, R=0.6PP NCP=2.3	P N	' P=20?, R=1 ICP<-3.5	1.15PP DIC?
	20%PP	15%PF		DIN?
DIC, DIN \rightarrow	1 //	N	CP=5.66/2-	4= -1.2

GOMECC-Mississippi Transect

Great DIC enrichment in the bottom water

Summary

 Globally, river loadings are heterotrophic, in particular, this is the case for tropical rivers. Large river plumes are autotrophic and a sink of CO₂. This is particularly true for rivers with high anthropogenic DIN loading. River HCO₃⁻ affects coastal TAlk distribution. pCO₂ in large river plumes has a great spatial and seasonal variability. Potential coccolith bloom may be an important mechanism controlling surface water pCO₂ for some large river plumes.

Thank you!

Distribution of riverine HCO³⁻ concentration

3500 • Danube 3000 Huanghe 2500 Godavari ¥ 2000 Ganges Mississippi Mackenzie Xiiiang Changjiang ່ 00 H Indus Pearl St Lawrence Yukon Brahmputra Columbia 1000 Mekong Yenisei • Lena Parana Niger Amazon 500 Kolyma Orinoco Ubang Congo 0 0 10 20 30 40 50 60 70 80 Latitude

Maximum shifted to north as a result Of precipitation pattern

From Cai et al. 2008 *Continental Shelf Research* 28:1538-1549.

The Mississippi River

The Changjiang (Yangtze River)

Mixing in the Amazon River plume

Amazon River water has low TA & low buffer capacity; in contrast, MR water has high TA and high buffer capacity.

October 2005 mixing

 ΣCO_{2_N} ($\mu mol/kg$)

Satellite image of CaCO₃

Plate 1. Climatology of classified coccolithophorid blooms (measuring >4800 km²) for the world's oceans in CZCS imagery dating from November 1978 to June 1986. The maximum spatial extents of blooms detected during this period are displayed. The coccolithophorid bloom class is white, the noncoccolithophorid bloom class is blue, and the land is green. Black indicates areas lacking image coverage.

Brown & Yoder, JGR-Ocean 1994

salinity

*p*CO₂ (late summer & fall)

Seasonal variation

1. Low pCO2 in spring and early summer

2. High CO2 in late summer and fall

NCP> 0 (net autotrophic) or GPP > R OC exports > OC imports & DIC import > DIC export Results: low DIC, & low pCO_2