

Mid-Term Strategic Planning

Initiated by SOLAS SSC in late 2008

Question:

Are there areas of SOLAS science or key scientific questions that:
require a "push"?
and/or
require improved international coordination?

Process:

"White papers" drafted by SSC members, 2009

→ Community discussion at SOLAS Open Science Conference, Barcelona, 2009

Based on the discussions:

→ Targetted support for **international** workshops, reviews, planning groups.

Goal:

Coordinated, national proposals built on "group awareness" and with the potential for **international** cooperation, scientific exchange and joint synthesis.

SOLAS Mid-Term Strategic Planning (underway)

Cross-Cutting, Complex Scientific Topics Relevant to SOLAS and Requiring Coordinated, International, Research

Atmospheric control of nutrient cycling and production in the surface ocean

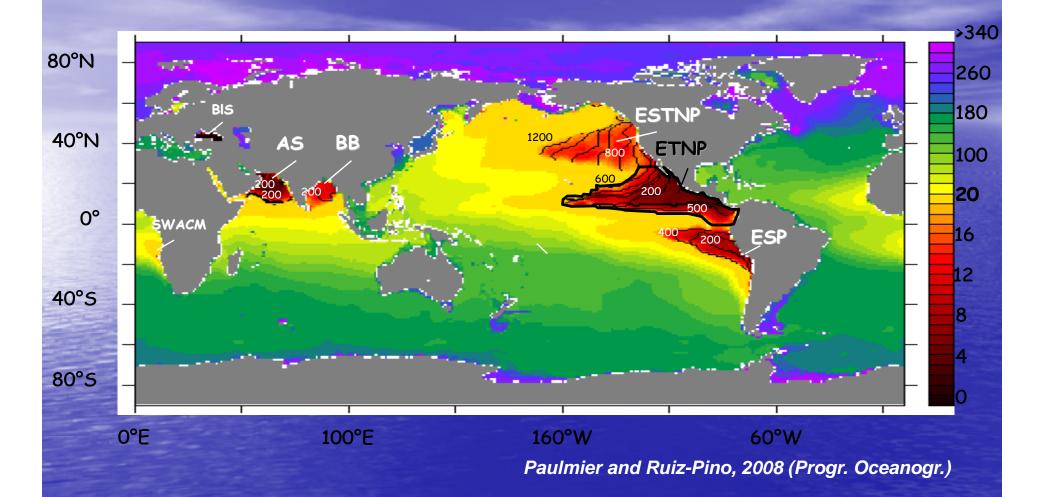
Air-sea gas fluxes at Eastern boundary Upwelling Systems and Oxygen Minimum Zones

Sea ice biogeochemistry and interactions with the atmosphere

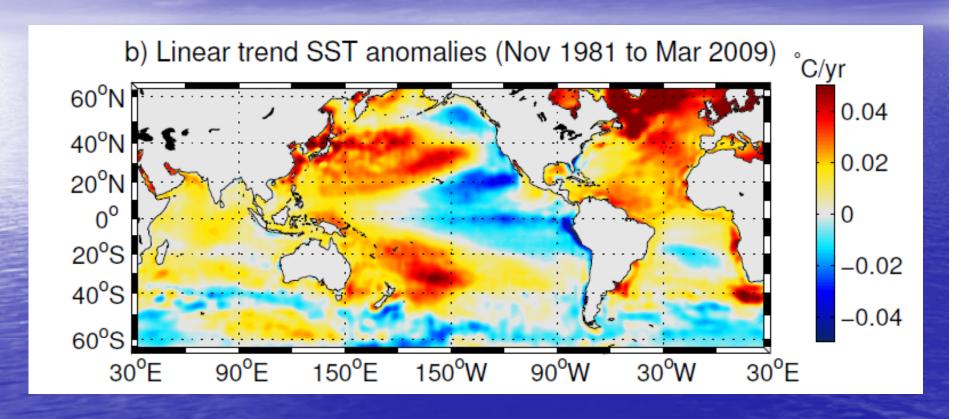
Ocean-derived aerosols: production, evolution and impacts

Ship plumes: impacts on atmospheric chemistry and nutrient supply

MOIN: the Minimalist OceanSITES Interdisciplinary Network


Large scale experiments for hypothesis testing

Aurélien Paulmier and Véronique Garçon LEGOS, Toulouse, France


The OMZs

O₂ distribution at depth where O₂ concentrations are minimal (WOA 2005)

Eastern Pacific (and OMZ) cooling recently

Adding to lower oxygen ...

Impacts

Perturbations of biogeochemical cycles and remineralization:

- O₂ loss
- Loss versus fixation of N
- Recycling versus sequestration of C
- Production/accumulation of N₂O, CH₄, H₂S, halogeneous and reduced metals (Fe, Cu)
 - Consumption versus production of DMS
 - Acidification

Molar ratios
PP/Fisheries
Biodiversity/Shift

↑OMZ

Climate variability
+
Ecosystem

Key Questions

 What are the short and long-term influences of the EBUS-OMZs on climate change,

including the impact of the greenhouse gases, clouds formation, and control of O_3 and O_2 ?

 What are the mechanisms that drive degradation of organic matter (including CDOM) for the production of GHGs,

e.g. the switch from an aerobic (O₂-respiration) to an anaerobic (*via* NO₃, SO₄, metanogenesis, IO₃, Fe) remineralization?

Strategy and future

Sitemap

HOME | ABOUT SOLAS | SCIENCE | NEWS | RESOURCES | SUMMER SCHOOL | LINKS | CONTACT US

ABOUT SOLAS

What is SOLAS?

Organisation+Structure

- Scientific Steering Committee (SSC)
- Science Plan+ Implementation Strategy (SP+IS)
- Mid-Term Strategy
 OMZ meeting
- Task Teams
- Implementation Groups
- SOLAS Networks
- · SOLAS IPO

Sponsors

Partner projects

People

Opportunities

You are here: Home > About SOLAS > Organisation and Structure > Mid-Term Strategy > OMZ meeting

Mid-Term Strategy meeting:

Air-Sea Gas Fluxes in Eastern Boundary Upwelling Systems and Oxygen Minimum Zones (OMZs)

8-10 November 2010 Lima, Peru

Background

Among the new initiatives approved by the <u>SOLAS Scientific Steering Committee</u>, the theme of air-sea exchange of short- and long-term radiatively-active gases in the Eastern Boundary Upwelling Systems (EBUS) and Oxygen Minimum Zones (OMZs) has been discussed during the <u>SOLAS Open Science Conference</u> in Barcelona (November 2009).

This initiative focuses on the co-existence of specific mechanisms, which are inducing a perturbation of biogeochemical cycles (for instance nitrogen loss, acidification) and acting as an "engine" producing and/or consuming climatic gases: O2, CO2, N2O, CH4, halogenous compounds. The scientific issues are:

- 1) Which is the complete influence of the OMZs-EBUS on climate change, taking into account the impact of the greenhouse gases, cloud formation and control of O3 and O2?
- 2) Which are the responsible mechanisms associated with a bio-, photo-, or chemo-degradation of organic matter (including CDOM) for the production of greenhouse gases, e.g. the switch from an aerobic (O3-respiration) to an anaerobic (via NO3 SO4, metanogenesis, IO3, Fe) remineralization?

In order to answer these questions in the tropical OMZs-EBUS, the initiative focuses on the eastern tropical Pacific, which corresponds to the largest OMZ.

The workshop, including one day of short presentations and one day and a half for discussion, aims to stimulate an experimental oceanic and atmospheric effort, coordinated at the international scale from 2011-2012.

Organising committee

Veronique Garcon	LEGOS/CNRS, Toulouse, France SOLAS Scientific Steering Committee	veronique.garcon(at)legos.obs-mip.fr
Michelle Graco	Chemical Research Unit, IMARPE, Lima, Peru	mgraco(at)imarpe.gob.pe
Aurelien Paulmier	LEGOS/IRD, Toulouse, France	aurelien.paulmier{at}legos.obs-mip.fr
Miriam Tanhua	IFM-GEOMAR, SFB 754	mtanhua{at}ifm-geomar.de

Meeting information

The meeting will take place at the <u>Instituto del Mar del Peru (IMARPE)</u> in Lima, Peru, from 8 to 10 November 2010.

Download information on meeting venue

Scientific Committee:

Arnaud BERTRAND (LMI DISCOH, IRD, Peru)
Francisco CHAVEZ (MBARI, USA)
Véronique GARCON (LEGOS/CNRS, SOLAS SSC, France)
Michelle GRACO (IMARPE, Peru)
Dimitri GUTIERREZ (IMARPE, Peru)
Aurélien PAULMIER (LEGOS/IRD, France/Peru)
Elisabeth SILVESTRE (SENAMHI, Peru)
Ken TAKAHASHI (IGP: Instituto de Geofisica de Peru, Peru)
Rainer VOLKAMER (University of Colorado, CIRES,USA)
Doug WALLACE (IFM-GEOMAR, Chairman International SOLAS, Germany)

Tel: +44 (0) 1603 59 1530

DAY ONE

INTRODUCTION

9h15-9h30: Welcome IMARPE (Renato Guevarra). Introduction SOLAS (Doug Wallace) and workshop (Véronique Garcon)

FOCUS 2: Exchange across the air-sea interface

9h30-9h45: Brian Ward

9h45-10h00: Phil Nightingdale 10h00-10h15: Ralph Keeling

FOCUS 3: Long-lived radioactively active gases

10h15-10h30: Carol Robinson 10h30-10h45: Laura Farias 10h45-11h00: Arne Körtzinger

Coffee break

FOCUS 1: BCG interactions between the ocean and the atmosphere

11h30-11h45: Bill Miller 11h45-12h00: Rafel Simo 12h00-12h15: Peter Croot

12h15-12h30: Roland Von Glasow 12h30-12h45: Trish Quinn

12h45-13h00: Rainer Volkamer

Lunch

FOCUS 2: Transport and transformation in the oceanic boundary layer

15h00-15h15: Francisco Chavez 15h15-15h30: Hervé Claustre 15h30-15h45: Martin Hernandez 15h45-16h00: Peter Revbesch 16h00-16h15: Michelle Graco

Coffee break

16h45-17h00: Marcel Kuypers

17h00-17h15: Christian Tamburini / Christos Panagiotopoulos

17h15-17h30: Aurélien Paulmier 17h30-17h45: Niki Gruber

17h45-18h00: Planning for DAY TWO

DAY TWO

LINK SOLAS-PALEO: Surface ocean lower atmosphere interactions in

the past

9h 15-9h30: Dimitri Guterriez 9h30-9h45: Abdel Siffedine 9h45-10h00: David Field 10h00-10h15: Isabel Cacho 10h15-10h30: Philippe Martinez 10h30-10h45: Jorge Valdez

Coffee break

11h15-13h00: Splitting in working groups:

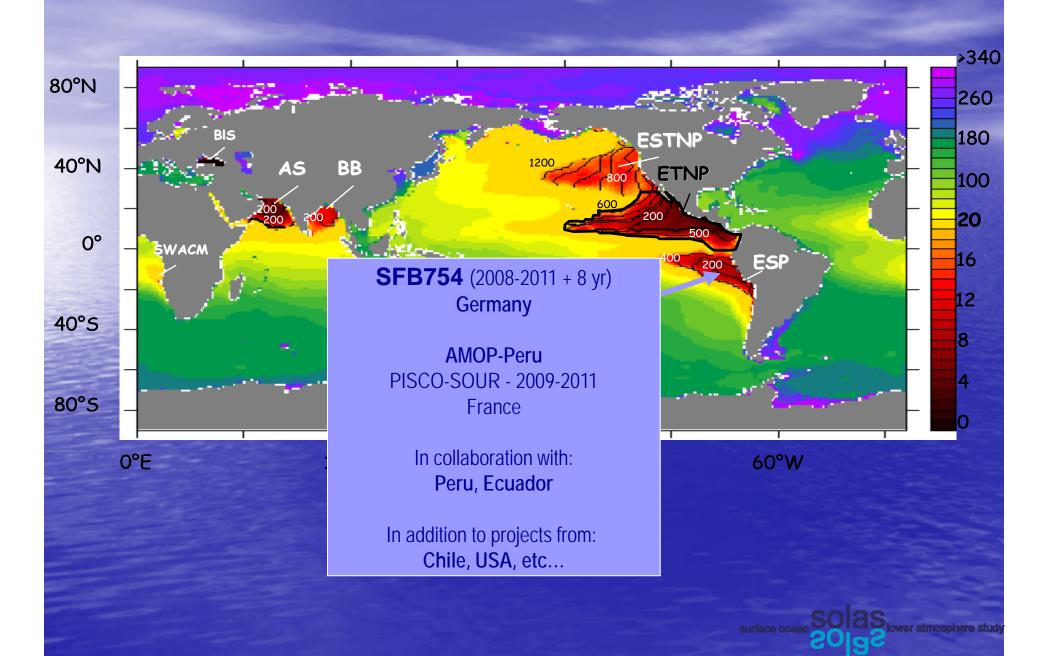
WG 1: FOCUS 1 WG 2: FOCUS 2 WG 3: FOCUS 3

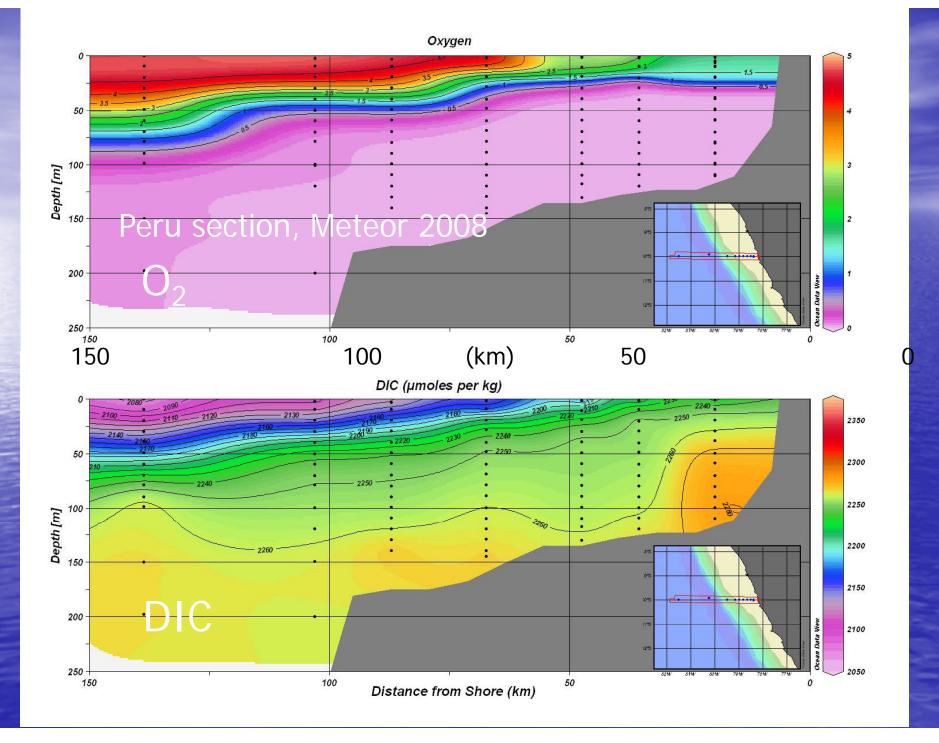
WG4: Paleoceanography

Identification of the key questions to be addressed for each Working group

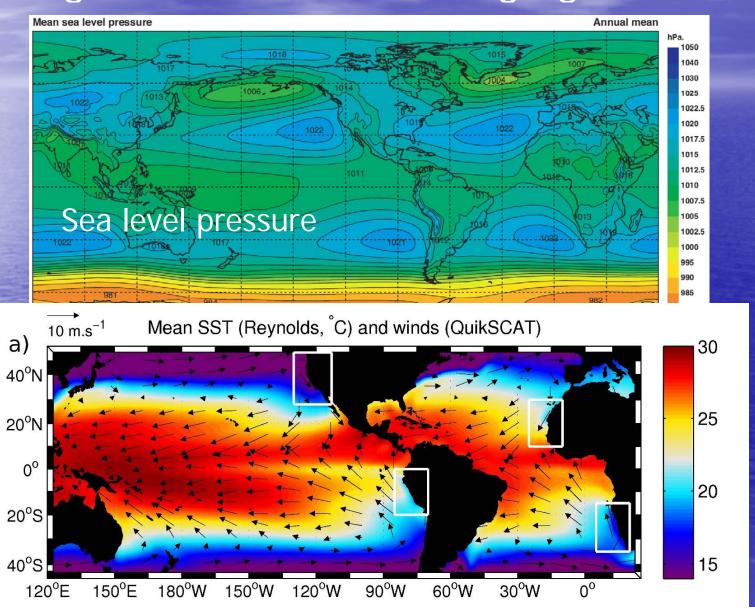
Lunch

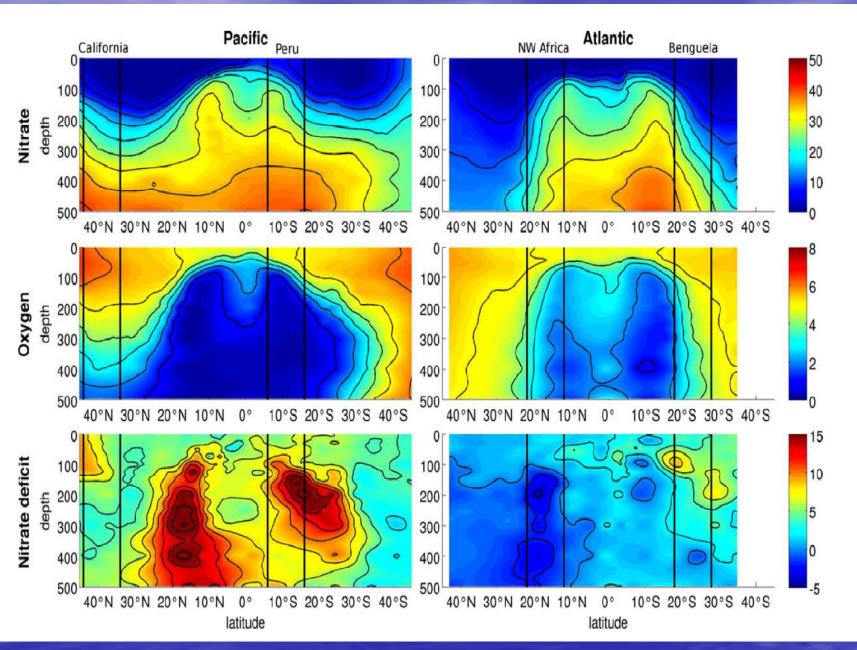
15h00-18h00: All afternoon: Working groups Sessions


Writing of future common plan along with timetable for international cruises and experiments in the OMZ of the East tropical Pacific

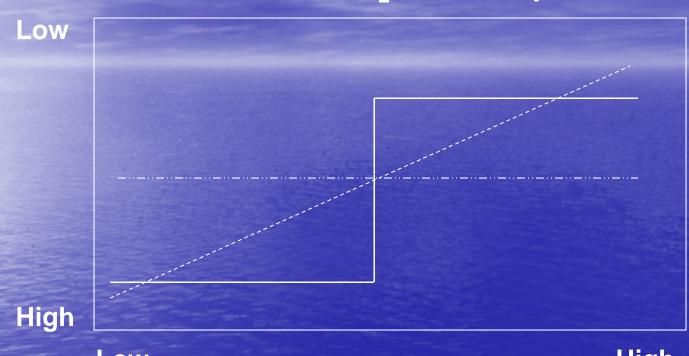

Meeting Dinner in Barranco.

DAY THREE


Working group reports and future planning Closure of workshop Lunch


International Interactions and Opportunities

Coastal upwelling ecosystems susceptible to changes in climate, offer large gradients



Chavez and Messie, 2009, Progress in Oceanography

EBUEs

- Clear differences among major systems in terms of fluxes
- Clear latitudinal differences within each system
- Provides the context for well-defined experiments to use gradients in the environment to answer important scientific questions

Possible solutions for the impact of a "property" on air-sea flux of CO₂ for example

Oxygen, pH or latitude High

Peru

Baja California

NW Africa

Namibia

Chile

Alta California Iberia

Benguela