25 years of Hawaii Ocean Time-series carbon flux determinations: Insights into productivity, export, and nutrient supply in the oligotrophic ocean

MATTHEW CHURCH, ROBERT BIDIGARE, JOHN DORE, DAVID KARL, MICHAEL LANDRY, RICARDO LETELIER, ROGER LUKAS OCEAN CARBON BIOGEOCHEMISTRY SUMMER WORKSHOP

JULY 2013

HAWAII OCEAN TIME-SERIES

H.O.T. University of Hawaii

Thank you

- Craig Carlson (UCSB) and Ricardo Letelier (OSU)
- Ken Johnson (MBARI)
- Heather Benway (WHOI)
- Mary Z. (WHOI)
- The National Science Foundation

A Dedicated HOT Team

> Subtropical gyres comprise some the largest habitats on this planet

> Constraining carbon production and sequestration in these regions is critical to global carbon budgets

> Time series programs afford unique opportunities to define the magnitude and pathways of carbon fluxes in the open sea

Time, water, and change

- The complexity of ecosystem dynamics, even in "stable" systems, demands multidisciplinary, sustained observations.
- Implementation and leveraging of remote and autonomous sampling platforms at ocean time series sites is providing new insights into bioelemental cycling in these ecosystems.

The Hawaii Ocean Time-series (HOT)

- Near monthly cruises to
 Station ALOHA since October
 1988
- ALOHA is a deep, open ocean
 (~4800 m) site
- Shipboard and remote

 (moorings, gliders, floats, and satellites) measurements of
 ocean biogeochemistry,
 physics, and plankton ecology
- 4-day cruises, intensive sampling to 1000 m

Mixed layer ~30-100 m, euphotic zone ~100-125 m
 >65% of the daily carbon fixation occurs in the nutrient-deplete mixed layer

Carbon fixation and particulate carbon export

The many faces of Station ALOHA

Ricardo Letelier and Angel White (OSU)

Variability in mixed layer inorganic carbon

What processes control the summertime drawdown of DIC at Station ALOHA?

Spring-fall drawdown of DIC in the absence of nitrate is a common feature of the subtropical gyres

(Michaels et al. 1994, Bates et al. 1996, 1998, Gruber et al. 1998, Lee et al. 2000, Karl et al. 2003, etc.)

Quantifying net community production in the open sea is difficult

- 1. Small net changes superimposed on large background pools and fluxes
- 2. Need to accurately quantify impacts of biology (production and respiration) and physics (vertical and lateral transport, air-sea exchange)
- 3. Ecology matters nutrient fluxes and growth efficiencies

Measurements of net community production at Station ALOHA

- Mixed layer DIC and ¹³C/¹²C
- Seasonal evolution of dissolved oxygen, O₂:inert gas ratios, and oxygen isotopes
- Nitrogen-based determinations of new production; over annual scales ≈ NCP
- Vertical transport of organic matter export (POC, DOC, and migrant flux)

Estimates of NCP at ALOHA abound...

SCIENCE VOL 316 27 APRIL 2007 **Revisiting Carbon Flux Through the Ocean's Twilight Zone**

Ken O. Buesseler,¹* Carl H. Lamborg,¹ Philip W. Boyd,² Phoebe J. Lam,¹ Thomas W. Trull,³ Robert R. Bidigare,⁴ James K. B. Bishop,^{5,6} Karen L. Casciotti,¹ Frank Dehairs,⁷ Marc Elskens,⁷ Makio Honda,⁸ David M. Karl,⁴ David A. Siegel,⁹ Mary W. Silver,¹⁰ Deborah K. Steinberg,¹¹ Jim Valdes,¹² Benjamin Van Mooy,¹ Stephanie Wilson¹¹ Deep-Sea Research II, Vol. 43, No. 2-3, pp. 539-568, 1996

Seasonal and interannual variability in primary production and particle flux at Station ALOHA

D. M. KARL,* J. R. CHRISTIAN,* J. E. DORE,* D. V. HEBEL,* R. M. LETELIER,* L. M. TUPAS* and C. D. WINN*

Limnol. Oceanogr., 50(2), 2005, 646-657 © 2005, by the American Society of Limnology and Oceanography. Inc

Biogeochemical cycling in the oligotrophic ocean: Redfield and non-Redfield models

James Robert Christian

NATURE VOL 389 30 OCTOBER 1997

Experimental determination of the organic carbon flux from open-ocean surface waters

S. Emerson*, P. Quay*, D. Karl†, C. Winn†, L. Tupas† & M. Landry†

...nutrient mass balances and carbon export

NATURE · VOL 373 · 19 JANUARY 1995

Ecosystem changes in the North Pacific subtropical gyre attributed to the 1991–92 El Niño D. M. Karl, R. Leteller, D. Hebel, L. Tupas, J. Dore, J. Christian & C. Winn

Deep-Sea Research I 48 (2001) 2595-2611

A time-series study of particulate matter export in the North Pacific Subtropical Gyre based on ²³⁴Th:²³⁸U disequilibrium

Claudia Benitez-Nelson^{a,*}, Ken O. Buesseler^b, David M. Karl^a, John Andrews^b

Deep-Sea Research II 53 (2006) 698-717

On the relationships between primary, net community, and export production in subtropical gyres Holger Brix^{a,*}, Nicolas Gruber^a, David M. Karl^b, Nicholas R. Bates^c

NATURE Vol 465 24 June 2010

Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre

Kenneth S. Johnson¹, Stephen C. Riser² & David M. Karl³

Estimates of net community production at ALOHA

	Method of Determination	Rate (± stdev) mol C m ⁻² yr ⁻¹	Period	References
O₂ based approaches	Mixed Layer O ₂ : Ar	1.4 - 3.7 (± 1.0)	1992–2008	Emerson et al. (1997); Hamme and Emerson (2006); Juranek and Quay (2005); Quay et al. (2010)
	Mooring O_2	4.1 (± 1.8)	2005	Emerson et al. (2008)
	Sub-mixed layer float profiles	1.1 - 1.7 (±0.2)	2003-2010	Riser and Johnson (2008)
	Sub-mixed layer glider surveys	0.9 (± 0.1)	2005	Nicholson et al. (2008)
C-based approaches	Mixed layer ¹³ C/ ¹² C and DIC dynamics	$1.6 \pm 0.9 \\ 2.7 \pm 1.4 \\ 2.8 \pm 0.8$	1990-1995 1994-1999 1988-2002	Emerson et al. (1997) Quay and Stutsman (2003) Keeling et al. (2004)
Passive and active OM fluxes	Sediment traps (150 m)	0.9 (± 0.3)	1988-2012	HOT core data
	²³⁴ Th deficits	1.5 (± 0.8)	1999-2000	Benitez-Nelson et al. (2001)
	DOC export	0.4	2002-2012	HOT core data
	Zooplankton-mediated	0.1 (± 0.09)	1994-2005	Al-Mutairi and Landry (2001) Hannides et al. (2009)

NCP ranges 1.1-4.1 mol C m⁻² yr⁻¹, averaging ~2 mol C m⁻² yr⁻¹ Many of these estimates have uncertainties of ~30-60%

The devil is in the details...

- Diagnostic models depend on accuracy of :
 - Air-sea flux (±30%) limited by gas exchange parameterization
 - Lateral transport (±50-70%) limited by horizontal velocities
 - Vertical entrainment/diffusion (±50%) poor constraint on K_z
- Some estimates based on mixed layer dynamics (*i.e.* O_2 : Ar or ¹³C/¹²C) while others based on sub-mixed layer (seasonal evolution of O_2)
- O₂ based approaches require appropriate PQ and RQ
- Sediment trap biases
- Particles and DOC
- Nutrient sources supporting NCP

LETTERS

Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre

Kenneth S. Johnson¹, Stephen C. Riser² & David M. Karl³

Annual N supply: >88 mmol N m⁻² yr⁻¹ (0.6 mol C m⁻² yr⁻¹)

Courtesy of Ken Johnson, MBARI Chemical Sensor Lab

Vertical transport of nutrients by physical processes introduces C-enriched waters

Biological N supply to the ocean: N_2 fixation

- N₂ fixation estimated to fuel ~50% of particulate export in the subtropical N. Pacific
- Numerous taxa of N₂ fixing microorganisms
- N₂ fixation supported diatom-driven export estimated to contribute ~35% of the annual C-flux to the deep sea

Applied and Environmental Microbiology p. 6516–6523 September 2012 Volume 78 Number 18 Comparative Assessment of Nitrogen Fixation Methodologies, Conducted in the Oligotrophic North Pacific Ocean

Samuel T. Wilson,^{a,b} Daniela Böttjer,^{a,b} Matthew J. Church,^{a,b} and David M. Karl^{a,b}

production were measurable for nonconcentrated seawater samples after an incubation period of 3 to 4 h. The ¹⁵N₂ tracer measurements compared the addition of ¹⁵N₂ as a gas bubble and dissolved as ¹⁵N₂ enriched seawater. On all sampling occasions and at all depths, a 2- to 6-fold increase in the rate of ¹⁵N₂ assimilation was measured when ¹⁵N₂-enriched seawater was added to the seawater sample compared to the addition of ¹⁵N₂ as a gas bubble. In addition, we show that the ¹⁵N₂-enriched seawater can be prepared prior to its use with no detectable loss (<1.7%) of dissolved ¹⁵N₂ during 4 weeks of storage, facilitating its use in the

PLOS one September 2010 | Volume 5 | Issue 9 | e12583 Methodological Underestimation of Oceanic Nitrogen Fixation Rates

Wiebke Mohr*, Tobias Großkopf, Douglas W. R. Wallace, Julie LaRoche

only 40% of the maximum rate measured in the incubations to which $^{15}\mathrm{N}_2$ -enriched seawater had been added. In other words, for the 12-h incubation period under the described experimental conditions, the N₂ fixation rate was underestimated by 60% when the $^{15}\mathrm{N}_2$ was introduced as a gas bubble. In contrast, in both the isotopic equilibration and the culture experiments, the concentration of dissolved $^{15}\mathrm{N}_2$ remained stable at the predicted value throughout the 24 h in incubations to which $^{15}\mathrm{N}_2$ -enriched water was added.

16 AUGUST 2012 | VOL 488 | NATURE | 361

Doubling of marine dinitrogen-fixation rates based on direct measurements

Tobias Großkopf¹*, Wiebke Mohr¹*†, Tina Baustian¹, Harald Schunck¹, Diana Gill¹, Marcel M. M. Kuypers², Gaute Lavik², Ruth A. Schmitz³, Douglas W. R. Wallace⁴ & Julie LaRoche¹†

Our data show that in areas dominated by *Trichodesmium*, the established method underestimates N_2 -fixation rates by an average of 62%. We also find that the newly developed method yields N_2 -fixation rates more than six times higher than those from the established method when unicellular, symbiotic cyanobacteria and γ -proteobacteria dominate the diazotrophic community. On the

Annual climatology of N₂ fixation at Station ALOHA

• Annual (2005-2012) average N₂ fixation (bubble): 48 mmol N m⁻² yr⁻¹ (0.3 mol C m⁻² yr⁻¹)

•Annual (2012-2013) average N₂ fixation (no-bubble): 143 mmol N m⁻² yr⁻¹ (0.9 mol C m⁻² yr⁻¹)

Summary

- NCP at ALOHA averages ~2 mol C m⁻² yr⁻¹, with an uncertainty of ~±50%.
- Uncertainties in NCP derive from poor constraint on both physical (lateral advection, vertical entrainment, air-sea exchange) and biological processes (DOC flux, sediment traps, vertical migrators).
- The processes supplying nutrients supporting NCP remain unclear.
- Time series programs (augmented by autonomous technologies) continue to improve our ability to constrain the magnitude and variability in carbon fluxes in the open sea.

THANK YOU

Station ALOHA is one of the few places on Earth where time series measurements enable mass balance constraint on ocean NCP

How temporally variable are rates of production and export in the central North Pacific?

What processes control this variability?

What is the fate of biologically fixed carbon?

Interannual to subdecadal scale variability in mixing and mixed layer DIC

What role do biological and physical processes play in controlling the magnitude and variability in seasonal- to decadal-scale ocean carbon fluxes?

Annual cycle of productivity and export

Plankton community structure plays a key role in controlling carbon export

Climate modulated changes in the NPSG ecosystem

- Interannual to subdecadal variability in upper ocean mixing appears linked to basinscale climate fluctuations.
- Changes in nutrient and light availability alters biological productivity and biomass.
- Variability in inorganic carbon inventories, ocean pH, and air-sea CO₂ flux appear correlated to variations in salinity.

- ¹⁴C-primary production provides a highly sensitive means of quantifying daily rates of carbon fixation.
 - Requires confinement of samples
 - DO¹⁴C? At ALOHA ~20-30% of particulate carbon fixation
 - Daytime only or 24 hours? ~20-30% loss overnight
- ¹⁴C-primary production ≠ gross primary production
- ¹⁴C-primary production ≠ net community production
- Depending on how the method is employed, ¹⁴C-primary production ≈ net primary production?