- CCE LTER

Studies of climate effects on pelagic food-web dynamics in the California Current Ecosystem

Michael Landry

Integrative Oceanography Division Scripps Institution of Oceanography

... and many CCE-LTER contributors

NSF LTER (Long-Term Ecological Research) Network

26 sites: Terrestrial, Aquatic & Urban Ecosystems

California Current Ecosystem-LTER

FOCUS: Mechanistic understanding of ecosystem transitions and long-term climate impacts

MAJOR RESEARCH ELEMENTS:

- 1. Long-term, systematic observations CalCOFI, satellites, Stn M traps, gliders
- 2. Experimental process studies community dynamics, relationships biogeochemical interactions
- 3. Modeling ROMS, ecosystem Hypotheses, synthesis, bridge scales

CCE LTER

- CCE LTER

CCE Pls & Associated Researchers

Name	<u>Role</u>	Institution	<u>Interests</u>
Mark Ohman	Lead PI	SIO	Mesozooplankton Ecology
Lihini Aluwihare	Co-PI	SIO	Dissolved Organic Matter
Karen Baker	Co-PI	SIO	Information Management
Katherine Barbeau	Co-PI	SIO	Iron Geochemistry
David Checkley	Co-PI	SIO	Mesozooplankton & Ichthyoplankton
Peter Franks	Co-PI	SIO	Biophysical Modeling
Ralf Goericke	Co-PI	SIO	Phytoplankton Ecology
Michael Landry	Co-PI	SIO	Food-Web Structure and Function
Art Miller	Co-PI	SIO	Physical Oceanography; Modeling
Greg Mitchell	Co-PI	SIO	Remote Sensing and Bio-optics
George Sugihara	Co-PI	SIO	Nonlinear Modeling
Farooq Azam	Associate	SIO	Bacteria/Microbial Food Webs
Steven Bograd	Associate	PFEL	Physical Oceanography
Ron Burton	Associate	SIO	Molecular Probes for Protists
Dan Cayan	Associate	SIO	Atmospheric Physics
Teresa Chereskin	Associate	SIO	ADCP Currents
Emanuel DiLorenzo	Associate	Georgia T.	Biophysical Modeling
Russ Davis	Associate	SIO	Physical Oceanography
David Hyrenbach	Associate	Duke	Seabird Ecology
Brian Palenik	Associate	SIO	Microbial Diversity
Dan Rudnick	Associate	SIO	Mesoscale Ocean Physics
Tony Koslow	Associate	SIO	Planktivorous Fishes
Beth Simmons	E&O Coord.	SIO	Education and Outreach
Ken Smith	Associate	MBARI	Deep-sea Benthic Ecology
Bill Sydeman	Associate	PRBO	Seabird Ecology; Marine Mammals
Elizabeth Venrick	Associate	SIO	Phytoplankton Floristics

Presentation Outline

<u>New Perspectives on Old Problems</u> CalCOFI - sardines, zooplankton Climate variability, PDO, upwelling

CCE Process Studies

Dynamics of lower trophic levels Trophic constraints on export flux

Cyclical oscillations of pelagic fish

Sardine & Anchovy Regimes

Chavez et al. 2003. Science.

Zooplankton in the California Current

PDO Trend

Displacement volume of large zooplankton (500-µm mesh net) were 5X bigher during

were 5X higher during cold phase of PDO (1950's) compared to warm phase (1980s).

Roemmich & McGowan. 1995. Science.

Salps and Zooplankton Volume

MesoZoo carbon (top), displacement volume (middle), and salps (bottom. Arrows are El Ninos.

Lavaniegos & Ohman (2007)

Habitat Preferences of Sardine & Anchovy

R. Rykaczewski

Upwelling Mechanisms Coastal vs Wind Stress Curl

Retrospective Analysis

Monthly-averaged winds NCEP/NCAR CaRDs10 model

Rykaczewski & Checkley. 2008 PNAS

Sardine Surplus Production

Rykaczewski & Checkley. 2008 PNAS

Di Lorenzo et al. 2008. GRL

Di Lorenzo et al. 2008. GRL

Di Lorenzo et al. 2008.

New Perspectives

Biomass of large zooplankton has NOT shown a significant decadal trend

Sardine production related to the level of weak curl-driven upwelling, NOT coastal upwelling

PDO may NOT be the climate mode that regulates the processes of interest - upwelling enhancement of nitrate, chlorophyll and small zooplankton

California Current Ecosystem-LTER

FOCUS: Mechanistic understanding of ecosystem transitions and long-term climate impacts

MAJOR RESEARCH ELEMENTS:

- 1. Long-term, systematic observations CalCOFI, satellites, gliders ...
- 2. Process studies experimental community dynamics, relationships biogeochemical interactions
- 3. Modeling ROMS, ecosystem Hypotheses, synthesis, bridge scales

CCE LTER

Spatial Scale

We exploit the broad range of conditions that exist spatially in the contemporaneous ocean as analogs of expanding/ contracting system variability that occurs in time.

El Niño - April 1998

Lagrangian-designed Process "Cycles"

CCE Process cruises are organized around activity <u>cycles</u> of several days (mean = 4 days) that follow the path of a satellite-tracked drifter.

Each cycle is a coordinated suite of measurements to elucidate process rates and relationships as the community evolves in the marked patch of water.

Drifter w/ drogue (12-17 m)

Experimental Concept

Sum of "measurable" processes account for "observed" net rates of community change in the ambient environment

<u>Observed</u> = <u>Measured Process Rates</u>

Net Rate = Phytopl _ MicroZ _ MesoZ - Export of Change Growth Grazing Grazing

In Situ Experiments

CTD sampling - 8 euphotic depths

Environment: T, S, O₂ Light: daily intgr PAR, noon bio-opt Nutrients: P, N, Si Particulates: transm, POC, PN, BSi Community: FCM, HPLC, EPI

Experimental Rates

¹⁴C-primary prod (light+dark)
2-bottle dilution - specific μ & micro-graz
¹⁴C-pigment labeling - taxon-specific μ

Lagrangian design (net rates measured daily in bottles & field) Every rate has full community & environmental data

Zooplankton + Export

Bongo Net: Rykaczewski, Ohman mid-day, mid-night, 24-h diel size-fract mesozoo biomass gut fluorescence laser OPC size spectra

<u>MOCNESS</u>: Ohman mid-day, mid-night, 3 pairs/cycle depth-stratified to 450 m ZOOSCAN size analysis

Passive Export (Stukel)

Th:U disequilibrium Sediment traps (100 m) drift array beginning-end of cycle

Process Cruise Drifter Tracks

P0605 May-June 2006

CCE-P0605 MODIS-Aqua Chla w/ Globalstar drifter tracks

M. Kahru

System Variability May-June 2006

Phytoplankton Biomass & Growth

In situ Drifter Results

"Net Obs" is measured as the rate of change in the ambient water (Lagrangian design).

Drift Arrays: Fate of Primary Production

All rates based on fluorometric Chl a depth-integrated for the euphotic zone

<u>System trends</u>: growth, total grazing, ratio of meso:micro P0605 - positive net growth; P0704 - negative net growth Experimental Concept/Assumption Sum measured processes = ambient "net" observed

Relative Grazer Roles

Relative Grazer Roles

M. Stukel & C. Benitez-Nelson

Carbon-based Export Estimates

ThE ratio: 0.14

0.07

Simple Food-Web Flux Model

Flux Model Prediction Line = 1:1

Simple Food-Web Flux Model

Varying MicroZoo Trophic Linkages

Pellet Remineralization

CCE Process Experiments

Lagrangian design allows study of short-term temporal dynamics in a spatially complex system

- Resolve ambient changes from sum of measured rates
- System patterns in biomass, growth and grazing
- Strong and variable role of mesozooplankton
- Simple food-web export model

Future directions ...

- Comparative seasonal cruise (Oct 2008)
- Taxon-specific analysis, size relationships
- Model development parameterization, validation

Summary

CCE has shed new light on old issues Zooplankton biomass trends Sardines & wind-curl upwelling New mode of Pacific climate variability - NPGO

Process Experiments: lower food-web dynamics Measurement-constrained budgets of PP fate Coupling to ocean biogeochemistry (cycling & export) Parameterization of ecosystem models

