Modeling Low-Oxygen Regions

Andreas Schmittner College of Oceanic and Atmospheric Sciences Oregon State University

1. How well can global models simulate lowoxygen regions?

- 2. Long-term projections
- 3. Variability
- 4. Coastal ocean oxygen modeling
- 5. Paleo prespective

Ocean Carbon and Biogeochemistry (OCB) summer workshop 2010 Scripps Institution of Oceanography

Schmittner et al. (2007) Paleoceanography

How well can global models simulate low-oxygen regions?

- Large scale oxygen distribution can be modeled well
- Low-oxygen regions not so well. Typically suboxic volume overestimated. Issues: physics (resolution, mixing parameterizations), biology (zooplankton vertical migration, ...)

2. Long-Term Projections

Global Warming until year 4000

Business-as-usual based on burning of all readily available fossil fuel reserves (SRES A2, linear decrease from 2100-2300)

Schmittner et al. (2008) GBC

2200

1800

1400

1000

600

200

1900

2000

21 00

CO₂ (ppmv)

Impacts on Ocean Circulation and Productivity

Impact on O and N Cycles

- •Oxygen decreases
- •Suboxic water volume increases
- •Denitrification increases by 350%
- Nitrogen fixation increases
- •Decrease in NO₃ inventory small
- •N₂O production increases by 64% (estimated from empirical relation by Nevison et al., 2003)
- •=> atmospheric N₂O increases by 60 ppb (21%)
- •=> additional warming by 0.2°C

Schmittner et al. (2008) GBC

Dissolved Oxygen Change (%)

Oxygen Change (percent)

2. Long-term projections

32 28 24 20 16 12 8 4 0 -4-8 -12-16 -20 -24 28 -32 -36 -40

40

36

			O2 decrease	Solubility contribution	O2/Heat ratio
Study	Model	Forcing	(µmol kg ⁻¹) ^a	(%)	nmol J ⁻¹
Sarmiento et al. (1998)	GFDL		7 ^b		
Matear et al. (2000)	CSIRO	IS92A	7	18	
Plattner et al. (2001, 2002)	Bern 2D	SRES A1	12	35	5.9°
Bopp et al. (2002)	OPAICE-LMD5	SRES A2 CO2 only	4	25	6.1
	HAMOCC-3				6.6
Matear & Hirst (2003)	CSIRO		9	26	
Schmittner et al. (2008)	UVic	SRES A2	9		6.7 ^d
Oschlies et al. (2008)	UVic	SRES A2	9		6.7 ^d
	UVic-variable C/N	SRES A2	12		
Frölicher et al. (2009)	NCAR CSM1.4-CCCM	SRES A2	4	50	
		SRES B1	3		

$Table \ 2 \quad Model \ predictions \ of \ average \ ocean \ O_2 \ decrease \ by \ year \ 2100$

Keeling et al. 2010 Annu. Rev. Mar. Sci

- 3. Long-Term Projections Dissolved Oxygen is projected to decrease world-wide due to
 - decreased solubility
 - increased stratification / slower circulation
- Low-oxygen regions will expand, perhaps dramatically
 - increased denitrification
 - increased N₂O production (very small positive climate feedback)
- Biological effects of acidification may

Variability

- Much of the observed changes due to internal variability
- Models capture variability in North Atlantic
- Models underestimate variability in North Pacific

Biological-physical model configuration

ROMS:

3 km horizontal & 40 s-layers vertical resolution

Model runs:

Apr-Aug 2002, 2006, 2008 Atmospheric forcing:

2002: COAMPS winds & NCEP heat flux 2006, 2008: NAM winds & heat flux Oceanic forcing:

NCOM-CCS (I. Shulman, S. DeRada)

Biological forcing: NCOM-CCS 2006, 2008

Oxygen OBC & IC: empirical NO₃:O₂ ratio derived from GLOBEC-LTOP observations in the Oregon CTZ

Spitz, Batchelder, Koch CIOSS Project

0₂ (mgl⁻¹)

4. Coastal Models

Spitz, Batchelder, Koch CIOSS Project

Coastal Models

- Important to predict local occurrence of hypoxia
- Boundary conditions crucial

Paleo Perspective

- Provides information on past episodes of ocean deoxygenation and effects on biogeochemical cycles (e.g. N-cycle)
- Models including N-isotopes are now available and can provide quantitative constraints in combination with observations

Thanks

Paleo:

Effects of Ocean Circulation Changes

Shutdown of Atlantic Meridional Overturning Circulation

Schmittner et al. (2007) Paleoceanography

Schmittner et al. (2007) Paleoceanograph

Schmittner (2005) Nature

Atlantic

Pacific

Productivity Decreases

Schmittner 2005 Nature

UVic Model (Weaver et al. 2001)

2D Energy-Moisture Balance Atmosphere (fixed winds)

Dyn. Thermod. Sea Ice **3D Ocean Circulation** (MOM) (1-1.8)x3.6, 19 levels 2N2PZD Ocean Ecosystem / **Biogeochemistry** Model (Schmittner et al. 2008 GBC)

Assumptions:

Constant Elemental Ratios

- •No DOM
- No N-Deposition
- •No River Input of N

tuned to reproduce global mean ^{™15}N

Middleburg et al. [1996]

SedDeni = $\alpha_{sp} \cdot 10 \wedge \left[-0.9543 + 0.7662 \cdot \log(F_c) - 0.2350 \cdot \log(F_c)^2 \right]$

Model/data comparisons: cross-sections of Chl-a, O₂ at 44.65N on 10 July 2002

