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Rapid increases in biomass form bl
dense enough to color water.
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Modeling mixotrophy at the global scale
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A trait-based approach to modeling
marine plankton

- size

- nutrient uptake

- phototrophy or heterotrophy

Seed with organisms randomly
assigned traits

Observe emergent patterns

Follows et al. (2007) Science
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The mixotroph advantage: Should these
“superbugs” be universally dominant?

Nutrient source
when nutrients
are limiting

Photosynthesis

Carbon source
when prey is

Grazin
limiting 5

Tittel et al. (2003) PNAS
Flynn & Mitra (2009) J. Plankton Research



Key: Quantifying tradeoffs in resource
acquisition strategies
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Mixotrophs have an advantage in
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Oligotrophic gyres are also expanding
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. Mixotrophy affects the amount of
primary production W/
* Allows extra carbon fixation OO OO

* Provides a “short-circuit” in
remineralization at the surface

. Density and palatability affect the
fate of this organic C .
. Focused studies on oligotrophic gyre " /v
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