#### Carbon Sink Trends in the Northern Oceans

#### Galen A. McKinley

University of Wisconsin – Madison

OCB Workshop July 22, 2008

# Acknowledgements

- David Ullman, Val Bennington: Wisconsin
- Stephanie Dutkiewicz: MIT
- Nick Bates: BIOS
- Corinne LeQuéré: BAS & UEA

Funding from NASA

# Context

- The ocean sink appears to be in decline
- What is the role of the Northern Oceans?



Canadell et al. 2007

# **Take-Home Messages**

- Regional trends can be identified in data
- Models capture some observed trends and elucidate mechanisms
- North and equatorial Pacific sink is steady
- Atlantic sink trend methodologies disagree

 Need for additional analyses, including more joint model-data efforts

### Observed trend in surface ocean pCO<sub>2</sub>, 1981-2007 unpublished figure from C. LeQuéré and collaborators



White shading is 1.6 µatm/yr, the global atmospheric trend
Larger dots have smaller error



### North Pacific Takahashi et al. (2006)

Basin mean rate = 12.0 ± 4.8 µatm/yr



### Observed trend in surface ocean pCO<sub>2</sub>, 1981-2007 unpublished figure from C. LeQuéré and collaborators



White shading is 1.6 µatm/yr, the global atmospheric trend
Larger dots have smaller error

# North Atlantic

#### **Observations and Models**

### Observed trend in surface ocean pCO<sub>2</sub>, 1981-2007 unpublished figure from C. LeQuéré and collaborators



White shading is 1.6 µatm/yr, the global atmospheric trend
Larger dots have smaller error

# Observed trends in $\Delta pCO_2$ mid-1990's - mid-2000's



50



Schuster and Watson, 2007



# Summary for mid-1990's to early 2000's (Schuster and Watson, 2007)

- Regions 1-4 are declining in CO<sub>2</sub> uptake
- Region 5, 6 are neutral or increasing
- Conclusion: the basin-wide sink is declining



# Modeling the North Atlantic carbon cycle

# A North Atlantic regional model...



#### Sea Surface Temperature

- MITgcm, 20S-80N
- 0.5 x 0.5 horizontal, 23 vertical
- Parameterizations
  - GM-Redi (isopycnal mixing)
  - KPP (mixed layer)
- Forcing:
  - daily NCEP, 1992-2006
  - SST restored to Reynolds et al 2002
- Scenarios:
  - Modern (pCO<sub>2</sub><sup>atm</sup> from Mauna Loa)
  - Preindustrial ( $pCO_2^{atm} = 280ppm$ )

# Ecosystem and carbon cycle



- Dutkiewicz et al. (2005) ecosystem
- 2 phytoplankton, 1 zooplankton class, dissolved and particulate detritus
- Explicit silica and iron
- Coupled carbon and oxygen cycles

### Low frequency year) 1 (> pCC variability at Bermuda

Data: Bates, 2007

$$pCO_2 - T = \overline{pCO_2} \cdot \exp[0.0423(T - \overline{T})]$$
$$pCO_2 - nonT = pCO_2 \cdot \exp[0.0423(\overline{T} - T)]$$

Takahashi et al, 1993



# Variability and trends across the North Atlantic

1992-2006

# Basin-scale CO<sub>2</sub> flux variability

compared to Takahashi et al. 2002 in 1995



# Basin-scale CO<sub>2</sub> flux variability

compared to Takahashi et al. 2002 in 1995



# What are the patterns of change?



# EOF1 CO<sub>2</sub> flux and pCO<sub>2</sub>

PC1 of  $pCO_2$  (blue) and flux (red) r = 0.87





 $pCO_2$ 

### What drives the modeled trend?

Consider difference of 4yr means (2003-2006) – (1992-1995)

# $\frac{Ocean \ pCO_2 \ trend}{(2003-2006) - (1992-1995)}$



### pCO<sub>2</sub> and component trends (2003-2006) – (1992-1995)





uatm

# pCO<sub>2</sub> Trends

- Model illustrates Northwest/Southeast asymmetry in flux trend
- Due to combined effect of SST, DIC and ALK on ocean  $pCO_2$ 
  - SST change consistent with data
  - What drives DIC change?



# Summary

Surface ocean carbon cycle trends North Atlantic, 1992-2006

- $pCO_2$  increase spatially variable, max 30  $\mu$ atm
- pCO<sub>2</sub>-SST, pCO<sub>2</sub>-ALK, pCO<sub>2</sub>-DIC trend ±200 μatm, but largely counteract each other
  - SST change consistent with observations
  - Vertical mixing, biology, freshwater and horizontal transport all contribute to pCO<sub>2</sub>-DIC trend

# Does the model agree with observations?

#### Observed Trend, 1981-2007



#### Integrated model trend, >15N = 1.43 uatm/yr

# pCO<sub>2</sub> trends µatm/yr

#### Modeled Trend, 1992-2006

1.4



# mid-1990's - mid-2000's





- Consistent in West, East, South
- Not consistent in North

# How is the subpolar sink changing?

- MITgcm: increasing
- Shuster and Watson (2007): declining
- Atmospheric inversion?



### Carbon sink trend Subpolar N. Atlantic (50-79N)

|                      | 93–96 mean  | 02-05 mean | Percent change |
|----------------------|-------------|------------|----------------|
| MITgcm               | 0.22 PgC/yr | 0.26       | +18%           |
| Rodenbeck et al. '05 | 0.15        | 0.18       | +20%           |



# Conclusions

- Pacific
  - $pCO_2^{ocean} \sim pCO_2^{atm}$
  - Variability dominant feature of equatorial
- North Atlantic
  - Heterogeneous pattern in pCO<sub>2</sub><sup>ocean</sup> trend
  - mid-1990's to mid-2000's
    - $pCO_2^{ocean} > pCO_2^{atm}$  in south and east
    - $pCO_2^{ocean} < pCO_2^{atm}$  in western subtropics
    - Methodologies disagree in western subpolar

# Fall AGU

# Decadal Trends in the Ocean Carbon Cycle

Session OS14

# **Take-Home Messages**

- Regional trends can be identified in data
- Models capture some observed trends and elucidate mechanisms
- North and Tropical Pacific sink is steady
- Atlantic sink trend methodologies disagree

 Need for additional analyses, including more joint model-data efforts