Seasonal changes in primary production, phytoplankton community composition, and export during the Bering Sea Ecosystem Study

S. Bradley Moran

Graduate School of Oceanography, University of know Island a decompressor are needed to see this picture.

Average scenarios in the Arctic Climate Impact Assessment (ACIA) for the Arctic sea ice extent (permanent ice)

2010 - 2030

2040 - 2060

2070 - 2090

QuickTime[™] and a

decompressor are needed to see this picture.

1995

2010

sq km Sea ice extent, M

1980

The Earth is warming!

Positive proof of global warming.

The BEST-BSIERP Bering Sea Project

- Joint NSF-NPRB
- \$52 million study
 - 2007-2012
- Multidisciplinary
- >100 scientists
- 'Seeks to understand impacts of climate change and dynamic sea ice cover on the eastern Bering Sea ecosystem'

ORTH PACIFIC RESEARCH BOARD AN

bsierp.nprb.org

http://bsierp.nprb.org/index.html

Key Hypotheses

Hypotheses. Changes in sea-ice extent shifts the autotrophic community between;

- **1. Open-water blooms** characterized by lower biomass, flagellate blooms, low pelagic export, and reduced pelagic-benthic coupling.
- **2.** *Marginal ice-zone (MIZ) blooms*, characterized by high biomass, diatomdominated blooms, high pelagic export and tighter pelagic-benthic coupling.

Objectives and Methods

- 1. Quantify the magnitude and variability of gross PP and NCP in open-water and MIZ blooms.
- 2. Quantify the 1° floristic patterns & autotrophic cell size distributions in open-water & MIZ blooms.
- 3. Quantify the export flux of particulate organic carbon in shelf/slope waters.

6 cruises (2/yr), 70 d/yr: spring/summer 2008, 2009, 2010 Healy, Knorr, Thompson

HLY-08-02 cruise track

FF (Uncompressed) decompressor are needed to see this picture.

NP

CN

MN

SL

Phytoplankton Community Composition - Spring 2008

Phytoplankton Community Composition - Summer 2009

POC_{group} distribution on MN line - Spring 2008

- Reduction in mean size of Chl.-a containing particles from spring to summer

Cell abundances (cell mL⁻¹), MN Line - 2008 Spring Summer Synechococcus# Svnechococcus# 21 Nominal Depth [m] 1500 Depth [m 1500 40 1000 000 ominal 60 80 172°W 178°W 176°W 174°W 170°W 168°W 180°E 178°W 174°W 172°W 170°W 168°W 180°E 176°W Cryptophyte-like# Cryptophyte-like# 2500 2000 20 Nominal Depth [m] 00 05 Ξ 1500 Depth 1500 40 1000 nal 1000 60 80 180°E 178°W 176°W 174°W 172°W 170°W 168°W 180°E 178°W 176°W 174°W 172°W 170°W 168°W Total Euks [cells/ml] Total Euks [cells/ml] 3000 2500 5000 20 20 Nominal Depth [m] Depth [m] 2000 4000 40 40 1500 3000 60 60 1000 2000 1000 80 80 180°E 178°W 176°W 174°W 172°W 170°W 168°W 180°E 178°W 176°W 174°W 172°W 170°W 168°W

Spring Synechococcus# 20 Nominal Depth [m] 40 60 80 180°E 178°W 176°W 174°W 172°W 170°W Cryptophyte-like# 20 Nominal Depth [m] 40 60 80 Total Euks [cells/ml] 20 Nominal Depth [m] 40 60 80

Cell abundances (cell mL⁻¹), MN Line - 2009

2000

1000

500

400

300

200

100

3000

2000

1500

1000

500

168°W

168°W

bsierp.nprb.org

180°E

178°W

176°W

174°W

172°W

170°W

POC/²³⁴Th Ratios - 2008

POC/234Th Ratios - 2009

BEST-BSIERP Bering Sea Project

Sediment Trap POC Fluxes - 2008

Sediment Trap POC Fluxes - 2009

²³⁴Th and POC Export Comparison - 2008

²³⁴Th - Trap vs. ²³⁴Th/²³⁸U

POC - Trap vs. ²³⁴Th/²³⁸U

²³⁴Th and POC Export Comparison - 2009

²³⁴Th - Trap vs. ²³⁴Th/²³⁸U POC - Trap vs. ²³⁴Th/²³⁸U

Spring 2009

Summer 2009

BEST-BSIERP Bering Sea Project

BEST-BSIERP Bering Sea Project

NCP (from seasonal \triangle DIC) 2008

BEST-BSIERP Bering Sea Project

GPP- Δ^{17} O and NCP-MIMS O₂/AR Spring 2008

bsierp.nprb.org

Prokopenko, Sigman et al., (in prep)

2008 shelf oxygen uptake rates mmol/m2/d

Spring

8

2009 shelf oxygen uptake rates mmol/m2/d

Summer

Spring

8

Primary Productivity 2008

mmol C/m2/d

Primary Productivity & POC Export 2008

Primary Productivity & POC Export 2008

PP, Export, and Phyt. Comm. Comp. 2008

Primary Productivity 2009

Spring

Under Ice

min 19 ± 22 394 ± 214 150 ± 146 n = 10 n = 5 n = 9 88 ± 58 40 ± 26 27 ± 17 20 m Ice Trap 50 m Trap n = 5n = 4n = 5 22 ± 12 45 ± 15 16 ± 3.5 50 m SV-POC 25 m SV-POC n = 15 n = 27 e-ratio ~0.84 (SV) *e*-ratio ~0.05-0.10 *e*-ratio ~0.18-0.30 Sediment Sediment 2.38 ± 1.02 4.22 ± 1.58

Primary Productivity and POC Export 2009

Spring

MIZ

Summer

mmol C/m2/d

PP, Export, and Phyt. Comm. Comp. 2009

Bering Sea ice extent 1976-2009

Sigler et al., Eos, in review

Warm period followed by cooling

Cold bottom temperatures structure the Bering Sea

Biophysical moorings: Stabeno, Whitledge, Napp; Bottom trawl survey: Lauth

bsierp.nprb.org

M. Sigler., NOAA

6070707W

March April May June July

Summary

Consequence of late sea-ice retreat in 2008-2009;

- delayed shift in autotrophic community from MIZ (bloom/higher export) to open-water (enhanced recycling) conditions.

- spring bloom, greater 1° production, export, sed. O_2 utilization in 2009 due either to sample timing and/or thin ice.

Implications for pelagic-benthic coupling;

- <u>Scenario 1</u>: increased solar insolation & stratification, lower nutrients and production, leads to more pelagic fish dominated ecosystem.

- <u>Scenario 2</u>: greater export, increased benthic ecosystem (e.g., crabs), at cost to pelagic fisheries (e.g, pollack).

Acknowledgements

M.L. Lomas¹, R.P. Kelly², M. Baumann², K. Iken³ and R. Gradinger³, J.T. Mathis³, M. Prokopenko⁴, D. Sigman⁴, M. Bender⁴, A. Devol⁵, D. Schull⁶

¹Bermuda Institute of Ocean Sciences, Bermuda ²Graduate School of Oceanography, University of Rhode Island ³Institute of Marine Science, University of Alaska-Fairbanks ⁴Princeton University ⁵University of Washington ⁶Western Washington University

NSF

QuickTime™ and a decompressor are needed to see this picture.

QuickTime[™] and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.

QuickTime[™] and a decompressor are needed to see this picture.

QuickTime[™] and a

decompressor are needed to see this picture.

> QuickTime[™] and a decompressor are needed to see this picture.