In situ methods to measure Primary Production and Net Community Production

What have we learned?

Time Series Sites

- Time series sites provide:
 - test bed for new PP methods
 - evaluation of the annual carbon budget
 - other relevant characteristics of the system

How do time series sites bias our thinking about the biological pump?
 - spatial context

In-situ PP and NCP Methods

Estimate gross primary production (GPP) using triple isotopes (¹⁸O:¹⁷O:¹⁶O) of dissolved O₂

 O₂ mass and isotope (¹⁷Δ) mixed layer budgets
 Z_{ml}*d(¹⁷Δ-O₂)/dt = k_{gas}*[O₂]*(¹⁷Δ - ¹⁷Δ_{eq})/(¹⁷Δ_p - ¹⁷Δ) + GPP + Mixing

- respiration does not change $^{17}\Delta$

- Estimate net community production (NCP) using ratio of dissolved O₂ and Ar gases (O₂/Ar)

 combined O₂ and Ar mixed layer budgets
 Z_{ml}*d(O₂/Ar)/dt = k_{gas}*[O₂]*[(O₂/Ar)/(O₂/Ar)_{sat} -1] + NCP + Mixing
 - O_2/Ar insensitive to temperature and bubbles
- Estimate NPP and GPP using diurnal cycle in O₂/Ar

In-situ PP and NCP Methods

Advantages

- no bottle incubations (biases, time intensive)
- longer integration time (1-2 weeks)
- only water sample collection
- measured continuously underway (O₂/Ar)
- allow us to evaluate in vitro PP methods
- Disadvantages
 - biases, primarily due to mixing/entrainment and non steady-state conditions
 - substantial uncertainties (±30%)
 - converting production rates of O₂ to C

In vitro ¹⁸O-GPP vs ¹⁴C-NPP at HOT (23°N 158° W)

¹⁸O-GPP/¹⁴C-PP (12hr) = 1.9±0.1 (HOT) (24 months) -however, depth trend
¹⁸O-GPP/¹⁴C-PP (24hr) = 2.7±0.2 (JGOFS- Marra, Bender) (12hr) = 2.0 (JGOFS- Marra, Bender)
• Use these results to convert from GPP-O₂ to NPP-C production rates

In-situ ¹⁷ Δ -GOP estimates at HOT

• Estimates of ${}^{17}\Delta$ -GOP varied much more than concurrent in vitro 18 O-GOP.

• ${}^{17}\Delta$ -GOP significantly overestimated in fall and winter due to entrainment of subsurface water with high ${}^{17}\Delta$.

 Mixed layer ¹⁷∆-GOP budget approach is not always applicable.

$^{17}\Delta$ -GOP using depth integrated $^{17}\Delta$ change

• The steady-state ${}^{17}\Delta$ -GOP estimates equaled integrated 17D-GOP estimates during summer (stratified) but were substantially greater in winter (entrainment).

• Depth-integrated ${}^{17}\Delta$ -GOP (0-200m) are 20-30% higher than depth-integrated bottle 18 O-GOP (but within ±40% uncertainty)

Situation at BATS: similar to HOT but different

 Summer ¹⁷∆ increase is twice as great and twice as deep compared to HOT.

• Along isopycnal ventilation and mixing affecting ${}^{17}\Delta$. (and what other properties?)

• Yet, depth integrated ${}^{17}\Delta$ -GOP yields NPP rates about equal to measured 14 C-PP.

 $^{17}\Delta$ -GPP_{140m}/2 = 14 C-PP_{eqv} = 54±21 mmol C/m²/d (650±250 mg C/m2/d) 14 C-PP_{meas} = 49±11 mmol C/m²/d (590±130 mg C/m2/d)

$^{17}\Delta$ -GOP at Sta PAPA (50°N 145°W)

August 2009, 2010, 2012 $(Z_{ML}=25m)$ ${}^{17}\Delta$ -GOP = 113±42 mmol O₂/m²/d ${}^{14}C$ -PP_{eqv} = 42±16 mmol C/m²/d ${}^{13}C$ -PP_{meas} = 28±8 mmol C/m²/d (Giesbrecht et al., 2012)

$${}^{14}\text{C-PP}_{eqv}/{}^{14}\text{C-PP}_{meas} = 1.3 (PAPA)$$

= 1.3 (HOT)
= 1.1 (BATS)

In subpolar (non-N limited) regions the ¹⁷Δ-GOP mixed layer budget method is less sensitive to entrainment biases.
In situ PP rates higher than in vitro PP rates. Why?

CalCOFI: ¹⁷Δ-GOP and ¹⁴C-PP

(Dave Munro, L&O, 2013)

- Six cruises 2005-08.
- Better spatial resolution with ${}^{17}\Delta$ -GOP than 14 C-PP.
- Offshore PP decrease by 4x.
- Problems with ¹⁴C-PP?
- No offshore or productivity trend for in-situ e-ratio (0.20±0.05).

Underway measurements of T, S, pCO₂, O₂, O₂/Ar, nitrate, chlorophyll, (plankton abundance by flow cytometry) in mixed layer along repeated cruise tracks. Discrete samples for ¹⁷ Δ and calibration.

Time Series: Container Ships

• How does biological pump affect atmospheric CO₂ uptake rate?

• What is the spatial variability of NCP in the region? (How do the locations of time series stations (HOT, PAPA) bias our understanding?)

Impact of NCP and physical CO₂ supply on annual CO₂ uptake rates

NCP (mol C/m ² /yr)	-4.5±3.3	-4.8±2.1	-4.5±1.5	-2.5±1.0
Atmos CO ₂ Uptake	+2.7	+0.6	+1.7	+0.9
Phys Supply*	+1.8	+4.2	+2.8	+1.6

In regions of high productivity and high seasonality (e.g., western subarctic N. Pacific and N. Atlantic) deep winter mixed layers reduce the <u>effective</u> annual OC export rate and enhanced physical supply reduce air-sea CO₂ uptake rate. (Deirdre Lockwood, 2013)

e-ratio in the Ocean e-ratio(O) = $NCP_{(O2/Ar)}/GPP_{17\Delta}$ e-ratio(C) = e-ratio(O)*2.7/1.4

• ${}^{17}\Delta$ and O₂/Ar provide bottlefree estimates of e-ratio

 e-ratio doesn't appear to depend on productivity or temperature

• Mean ocean e-ratio [C] = 0.30± 0.07, fairly constant

PP from Diurnal in-situ O₂/Ar Cycle

- Zml*d(O₂/Ar)/dt = GPP Resp (comm) + Gas exchange + Mixing
- Respiration (comm) = nighttime dO₂/Ar decrease Gas loss
- Net PP = daytime dO₂/Ar increase + Gas loss
- Gross PP = daytime NPP + nighttime Respiration (comm)
- Net Comm Prod (NCP) = Gas loss (2 week integration)

PP across the subtropical N. Atlantic

Geotraces N. Atlantic (Nov, 2011)

Phosphate [µmol/I] @ Depth [m]=100

Conclusions

- Time-series stations are excellent sites to test PP methods.
- In situ ¹⁷Δ-GOP mixed layer estimates are most accurate under summer stratified conditions especially in subtropics.
- In situ ¹⁷Δ-GOP yields 30±20% higher rates than concurrent in vitro ¹⁸O-GOP (and ¹⁴C-NPP after O to C conversion). Method biases, if so, which one?
- Although ${}^{17}\Delta$ at HOT looks "1-D Vertical", not at BATS.
- Annual cycle in NCP necessary to understand impact of physical CO₂ supply and biological pump on atmospheric CO₂ uptake.
- Ocean-wide e-ratio is ~0.3 and doesn't vary much.
- Measuring diurnal O₂/Ar cycle provides another way to estimate in situ GPP, NPP and e-ratio. Compare to ${}^{17}\Delta$ -GOP.