OCB Scoping Workshop on GBF-OOI
(Global Biogeochemical Fluxes Program for the Ocean
Observatories Initiative, May 23 – 25, 2011

GBF-001 Overview: Rationale, Objective and Design

Reported by

Sus Honjo

Tim Eglinton

July 21, 2011

Wood Hole Oceanographic Institution

### **GBF-OOI Global Ocean Observatory**

### The Overarching Goal

To understand the global ocean carbon cycle, particularly the dynamics of **the** *Global Biological Pump* and its roles/effects over the ongoing *Climate Change* and radically improve our capacity to predict the Earth environment of the 21<sup>st</sup> century.







## Universal Biogeochemical Elements: Expressed in molC, Si m<sup>2</sup> yr<sup>-1</sup> in this paper



## **Organic Carbon Particles**

Cora: Particulate organic-carbon POC



## **Ballast Particles**

Cinora: Biogenic CaCO<sub>3</sub>-carbon PIC



Sibio: Biogenic opal SiO2.mH2O PSibio



#### Oceanic Ecosystems and POC Export Schematic



## Trapping Efficiency Correction <sup>230</sup>Th and <sup>231</sup>Pa



- N. Atlantic NABE 48°N
- N. Atlantic NABE 34°N
- N. Atlantic Sargasso Sea
- ※ Southern Ocean PFZ
- + Southern Ocean Weddell Sea.
- ♦ Indian Ocean Arabian Sea WAST
- 🔷 Indian Ocean Arabian Sea EAST
- Indian Ocean Arabian Sea CAST
- N. Pacific Station 'PAPA'
- Eq. Pacific Panama Basin

### 132 Annual Stations at M/B Depth, 1983-2008



Biogeochemical Provinces: Longhurst, et al., 1994

Over 1,700 elemental analyses (POC, PIC, Ca, Si, and lithogenic elements) are available.

## Organic Carbon Export Flux $(F_{m/b}C_{org})$



## Delivery Rate of $C_{org}$ at the Global Ocean Floor









# Global Total Fluxes of C<sub>org</sub>, C<sub>inorg</sub> and Si<sub>bio</sub> at m/b (teramol C, Si, yr<sup>-1</sup>)



## Global Ternary Plot



#### Carbonate vs. Silica Ocean



Silica Ocean:  $F_{\text{m/b}} \text{Si}_{\text{bio}} / F_{\text{m/b}} \text{C}_{\text{inorg}} > 1$ , and  $F_{\text{m/b}} \text{C}_{\text{org}} / F_{\text{m/b}} \text{Si}_{\text{bio}} \leq 1$ 

Carbonate Ocean: Rest of the pelagic ocean



#### **GBF-OOI Platform Configuration (Example)**

#### A. Primary Productivity Platform



x5 IPS-FRRF combo Surface water lab. ADA-controlled.

#### **B. Export Flux Platform**



Micro profiler (upper 200m) >6 TS-traps Bacteria sampling units

#### C. ESP-MMP Platform



Power generator platform ESP (and/or CytoBot) MMP, 100m from bottom ADA-controlled.

#### D.TS Water/Particle Sampler Platform



>5 PAS-PPS (FF-2) Descrete DNA, RNA Samplers



## Basic Methodology Discussed: Space-temporal Control of GBF-OOI Observatory

The Observatory covers entire water column (surface film to deep sea hydrothermal vent) with the equal emphasis on a depth of measurement:

#### Time-series control of measurement and sampling timings:

All timings to initiate "on-off" or "start-stop" of instruments at all depth, on any platforms or observatories, will be always controlled by a single Grand-Time-Table. This concept must be more explained!

#### **Decision of Global locations of Observatories:**

The first observatory will be deployed at a site with GBF significance and the location with significant technological advantage such as OOI's RSN N2, the south edge of the Juan De Fuca Plate (post-Workshop suggestions; not a conclusion as yet).

#### **Total duration of GBF-OOI Observatory Program:**

Many participants expressed duration must be in the order of a few decades.

Hopefully: 40 years; "May enable us to resolve the anthropogenic forces (Hanson et al., 2011)." The balance between the data acquisition and the advancing computation speed was argued.

Table 2: Current status and risks of some long-term time-series instruments and performance goals

| Mooring | Device                                                           | Abbrev. | Endurance* | Measurements/Activity                                                                            | Status in 2010                               | Needs                   | Risks in 2012 | R&D Funding                                   | Status in 2017                           |
|---------|------------------------------------------------------------------|---------|------------|--------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------|---------------|-----------------------------------------------|------------------------------------------|
| Α       | Incubation Productivity<br>System                                | IPS     | 12         | Time-series primary production<br>via robotic multi-isotopic<br>phytoplankton incubation         | Used in field operations:<br>Publications    | More field tests        | small risk    | Mass spec.<br>techniques                      | Routine 9-tracer incubation              |
| А       | Rapid Repetition Rate<br>Fluorometer/Particle<br>Transmissometer | FRR/PTM | 12         | Time-series primary production<br>via advanced optical<br>scattering/particle<br>transmissometry | Used in field<br>operations;<br>Publications | Final development       | small risk    | Biofouling<br>prevention for<br>optimization  | Early stage OOI data collection          |
| В       | Time-Series Sediment Trap                                        | TS-trap | 12         | Export Flux                                                                                      | Stable technology: multiple publications     | Accessory devices       | no risk       | No Additional                                 | Video/still imaging in the cone          |
| С       | Environmental Sampler                                            | ESP     | 12         | In situ autonomous time-series micro-fluvial DNA/RNA assay collection                            | Successful field tests; publications         | More field tests        | some risk     | Miniaturization;<br>add PCR                   | PCR capacity;<br>miniaturization         |
| D       | Remote Access<br>Sampler/Water Transfer<br>Sampler               | RAS/WTS | 12         | Time-series discrete water/particle collecting device                                            | Stable technology: multiple publications     | Accessory devices       | no risk       | Perfection of bio<br>molecule<br>preservation | - Multiple adsorption columns            |
| D       | Autonomous microbial sampler                                     | AMS     | 12         | Uncontaminated samples of<br>Eukarya/Bacteria/Archea                                             | Used in field operations                     | sample<br>preservation  | modest risk   | long-term<br>preservation                     | Time-series sampling                     |
| Α       | Moored Profiler                                                  | ММР     | 12         | Continuous profiling of water-<br>column by CTD, vectors, optics.                                | Semi-stable<br>technology;<br>publications   | Higher power            | small risk    | User<br>specifications                        | Video plankton<br>recorder               |
| В       | Euphotic Zone Micro-Profiler                                     | EMP     | 12         | Profiling of upper 200 m by CTD, optics, O2.                                                     | Under development                            | Under R&D               | some risk     | More sensors                                  | Risk-free profiling up<br>to 4 times/day |
| С       | MicroGrid<br>Buoy/Communication Tower                            | MG-Buoy | >24        | Advanced, power-generating, communications bouy                                                  | Apply existing technology                    | More R&D w. EOM-<br>MRL | small risk    | More comms. capacity                          | More power                               |
| С       | Communications                                                   | СОМ     | 12         | Irridium statelite phone system to transmit ESP assay and other sensor data once a day           | Apply current OOI exisiting technology       | Fast development        | small risk    | More experts'<br>participation in<br>GBF      | Radically improved                       |
| А, С    | Automated Depth Adjuster                                         | ADA     | >24        | Allows IPS and ESP to stay at 15-20 m.                                                           | Prototype testing;<br>Patent application     | High reliability        | small risk    | R&D for bi-<br>directional<br>depth           | Bi-directional depth adjustment capacity |

<sup>\*</sup> months

#### C. ESP-MMP Platform









#### A. Primary Productivity Platform





#### **B. Export Flux Platform**







#### C. ESP-MMP Platform









#### D. TS Water/Particle Sampler Platform









## Preservative Reservoir



**RNA Fixation Filter Unit** 



#### D. TS Water/Particle Sampler Platform



## **Submersible Incubation Robot (SID-ISM)**







OCB Scoping Workshop on GBF-OOI (Global Biogeochemical Fluxes Program for the Ocean Observatories Initiative, May 23 – 25, 2011

GBF-001 Overview: Rationale, Objective and Design

Reported by

Sus Honjo

Tim Eglinton

July 21, 2011

Wood Hole Oceanographic Institution