Title Version 1: Requirement for quality data: OMZ as an example

Title Version 2: Data quality requirements: OMZ example

Title Version 3: Requirement for quality data: OMZ & Southern Ocean examples

J. L. Sarmiento, Princeton University

OMZ: D. Bianchi, E. Galbraith, I. Kriest, E. Kwon, A. Oschlies, and Allison Smith

Southern Ocean: J. Russell, L. Talley, et al.

Requirement for quality data

- I. The oxygen minimum zone (OMZ) grand challenge
 - A. The present
 - B. The future
- II. The Southern Ocean grand challenge
 - A. The challenge
 - I. The present
 - 2. The future
 - B. The opportunity
 - I. Floats
 - 2. Modeling

I. The OMZ

I. A. The present

Water column thickness with $O_2 < 63 \nu \mu o \lambda / \Lambda$

7 major OMZs

from WOA01

Water column thickness with $O_2 < 10 \nu \mu o \lambda / \Lambda$

Only 3 OMZs show very low O₂

Evolution of oxygen content in O₂-minimum regions

Several O_2 -minimum zones have lost O_2 in the recent decades, resulting in a expansion of the regions with hypoxia

Effect of physics on OMZ volume in Princeton biogeochemistry models

Bianchi (pers. comm.)

Bias in existing gridded O₂ datasets - 1

Gridded datasets show O₂ biases around 5 mmol m⁻³ inside OMZs Can mask large volumes of suboxic waters!

Bianchi (pers. comm.)

Datasets: Oxygen distribution

Three oxygen datasets:

1,2 : objective mapping of GLODAP

3: WOA05 corrected using in situ GLODAP

GLODAP + CARINA:

High quality measurements from WOCE, JGOFS, CLIVAR, mostly after the 1990's (compare to WOA starting from the 1950's)

Oxygen dataset results - 3

Effect of physics on OMZ volume in Princeton biogeochemistry models

- Large model variability in deep (>1000 m). OMZ volumes are determined by preformed nutrients.
- Relatively uniform thermocline (<1000 m) OMZ volumes

Bianchi (pers. comm.)

I. B. The future

Model predictions of average O₂ decrease by 2100

Study	Forcing	O ₂ decrease (umol/L)	Solubility contribution (%)
Sarmiento et al. (1998)		7	
Matear et a. (2000)	IS92A	7	18
Plattner et al.	SRES A1	12	35
Bopp et al (2002)	SRES A2 CO ₂ only	4	25
Matear & Hirst (2003		9	26
Schmittner (2008)	SRES A2	9	
Oschlies et al. (2008)	SRES A2	9	
Frölicher et al. (2009)	SRES A2	4	50

Keeling et al. (2010)

Changes in global volume of hypoxic and anoxic water from 1860 to 2100 in CARBO-OCEAN model study

Frölicher et al. (2009)

Fractional O₂ change in GFDL ESM2.1 SRES A2 simulation

Analysis shows an increased supply of oxygen due to lateral diffusion compensating an increase in remineralization within the hypoxic waters. The lateral diffusive flux is the result of an increase of ventilation along the Chilean coast, as a drying of the region opens up a region of wintertime convection.

Hofmann & Schullnhuber (2009)

Increase in C:N ratio with increasing CO_2 leads to greater O_2 loss & more suboxia

Keeling et al. (2010), adapted from Oschlies et al. (2008).

Goals for an OMZ observational program

- (I)To capture interannual variability and trends of the distribution of:
 - -- temperature
 - -- salinity
 - -- nitrate, oxygen, , chlorophyll & POC, and pH (and C system using mapped alkalinity from hydrographic sections)
- (2) To capture interannual variability and trends of the atmosphere-ocean flux of:
 - -- heat
 - -- water
 - -- CO₂

– oxygen

- (3) To provide data for
 estimation of physical rates
 and processes of OMZ
 ventilation
 - (4) To provide data for estimation of biogeochemical rates such as
 - -- primary production
 - -- export production & remineralization
 - -- nitrogen fixation and denitrification

II. The Southern Ocean

II. A. The challenge

II. A. I. The present

Cumulative Heat flux/Total Heat flux: HIST – CTRL: 1990-1999

Zonal Heat content changes: HIST – CTRL: 1990-1999 Units:TJ/m²

Figure courtesy of T. Frölicher

6-member ensemble (NCAR CSMI.4-carbon)

Figure courtesy of T. Frölicher

4 different ESMs

Figure courtesy of T. Frölicher

Vertical distribution of CO_2 and heat uptake in CM2.1 and CORE

A schematic of the global meridional overturning circulation.

and the second sec

Marinov et al. (2006)

Spatial distribution of Intermediate Waters

L.Talley (pers. comm.)

Fractional reduction in biological productivity resulting from nutrient depletion in Southern Ocean

Southern Ocean surface nutrient depletion blocks the Southern Ocean nutrient resupply pathway & reduces low latitude biological productivity by ~75% Marinov et al. (2006) Meridional overturning in the Southern Ocean (Downes et al., in press)

II. A. 2. The future

Impact of ocean acidification

Surface water aragonite saturation state (Ω_{arag}). Values for 1994 were computed from GLODAP (Key et al., 2004), whereas 2100 is the median of 13 ocean general circulation models forced under the "business-as-usual" CO_2 emission

Winter mixed layer depth change: SRES A2 minus 20th century

-100

-150

-50

50

0

100

150

Sen Gupta et al. (2009)

From: SEN GUPTA et al., 2009, J. CLIMATE

(a) Zonally averaged wind stress (N m⁻²) and (b) wind stress curl (N m⁻³), from the multi-model ensemble for 20th century and SRES AIB. Strengthening (red) and weakening (blue) of the variable from 20th century to SRES AIB. ERA-40 results (yellow line). 20th century zonal averages for the individual models (gray lines).

Sen Gupta et al. (2009)

Goals for a Southern Ocean research program

- (1)To capture interannual variability and trends of the distribution of:
 - -- temperature
 - -- salinity
- -- nitrate, oxygen, ,
 chlorophyll & POC, and
 pH (and C system using
 mapped alkalinity from
 hydrographic sections)
 (2) To capture interannual
 variability and trends of the
 - atmosphere-ocean flux of:
 - -- heat
 - -- water

– oxygen

- (3) To capture formation rates of
 - -- SAMW
 - -- AAIW
 - -- UCDW
 - -- LCDW
 - -- AABW
- (4) To provide data for estimation
 - of biogeochemical rates, e.g.,
 - -- primary production
 - -- export production & remineralization
 - -- nitrogen fixation and denitrification

II. B. The opportunity

II. B. I. Floats

A typical Argo mission (200-250 profiles)

The present status of the Argo profiling float array

Canonical Argo mission:

- 0-2000 m; *T*, *S*, *p* (0.005 °C; 0.01 PSU ; 2.5 dbar)
- $\Delta t = 10$ days
- 4-5 years/200-250 profiles
- 27 countries; 800 floats per year
- UW:~120 floats per year

Note: all new floats being deployed south of 45°S (?) have ice avoidance software

Courtesy of S. Riser

Simulated Argo in offline MESO (Hallberg and Gnanadesikan 2005) model

Profiler locations and trajectories after 3 years. Colored by initial latitude.

Images courtesy of Vecchi and Hallberg

100 m temperature measurements From 1 year of simulation

Figure 21: The status of the Argo array in the Southern Ocean, as of July 2010. Blue colour indicates 0-2000 depth contour. Despite the progress in recent years, large regions of the high-latitude Southern Ocean remain poorly observed, especially close to the Antarctic continent. Courtesy of Mathieu Belbeoch, JCOMMOPS.

Number of floats per degree of latitude required for 300 km by 300 km Argo coverage

Cost of 2000 m floats

	Item: Configuration 1	
1	Basic Iridium profiling float, 0-2000 meters	18,000
2	Dissolved O ₂ sensor (Aanderaa or SBE)	5,000
3	WebLabs FLBB sensor	8,000
4	pH sensor	5,000
5	ISUS nitrate sensor	11,000
6	Lithium batteries	3,000
	TOTAL	50,000

	Item: Configuration 2	\$
1	Basic Iridium profiling float, 0-2000 meters	18,000
2	Dissolved O_2 sensor (Aanderaa or SBE)	5,000
3	WebLabs FLBB sensor	8,000
4	pH sensor	5,000
5	Lithium batteries	3,000
	TOTAL	39,000

Courtesy of S. Riser

II. B. 2. Models

A Science and Technology Center for Southern Ocean biogeochemical observations & modeling

<u>Theme I</u>: Observations, L. Talley (SIO/UCSD)

<u>Theme 2</u>: Modeling, J. E. Russell (University of Arizona)

<u>Theme 3</u>: Outreach, Heidi Cullen (Climate Central)