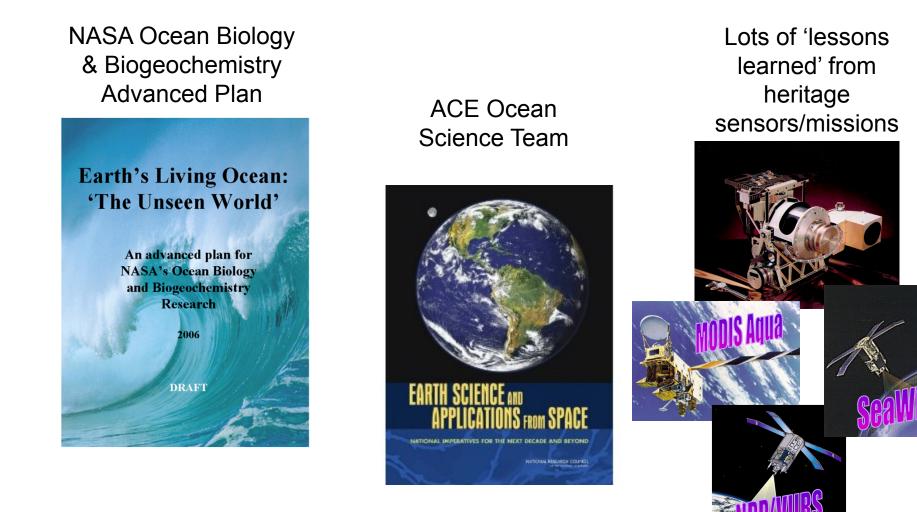
Pre-Aerosol, Cloud, ocean Ecosystem mission

Science Questions, Measurement Requirements, and Implementation: *Overview from the PACE* Science Definition Team Report Pelagic and Coastal Ecosystems mission

Science Questions, Measurement Requirements, and Implementation: *Overview from the PACE* Science Definition Team Report


PaCE

Pelagic and Coastal Ecosystems mission

Disclaimer: The material presented here does not represent any official view of NASA or PACE mission management regarding the goals or approaches of the PACE mission. This material summarizes recommendations from the PACE Science Definition Team (SDT). Some, all, or none of these recommendations may be adopted by NASA for developing the official scope and objectives of the PACE mission and for preparing an Announcement of Opportunity (AO). All of the material presented here is described in detail (~250 pages) in the publically-available SDT report, which is open for comment during the month of August.

Pelagic and Coastal Ecosystems mission

Overarching Science Questions

- What are the standing stocks, compositions, and productivity of ocean ecosystems? How and why are they changing?
- How and why are ocean biogeochemical cycles changing? How do they influence the Earth system?

• What are the material exchanges between land and ocean? How do they influence coastal ecosystems and biogeochemistry? How are they changing?

• How do aerosols influence ocean ecosystems and biogeochemical cycles? How do ocean biological and photochemical processes affect the atmosphere?

• How do physical ocean processes affect ocean ecosystems and biogeochemistry? How do ocean biological processes influence ocean physics?

• What is the distribution of both harmful and beneficial algal blooms and how is their appearance and demise related to environmental forcings? How are these events changing?

• How do changes in critical ocean ecosystem services affect human health and welfare? How do human activities affect ocean ecosystems and the services they provide? What science-based management strategies need to be implemented to sustain our health and well-being?

Approach

SQ-1 Ocean Ecosystems:

- Quantify phytoplankton biomass, pigments, and optical properties
- Assess key phytoplankton groups (e.g., calcifiers, nitrogen fixers, carbon export)
- Estimate particle size distribution and productivity using bio-optical modeling, chlorophyll fluorescence, and ancillary data on ocean physical properties (e.g., SST, MLD, etc.)
- Validate retrievals from pelagic to near-shore environments

SQ-2 Ocean Biogeochemical Cycles:

- Quantify phytoplankton biomass, functional groups, POC, PIC, DOC, PSD and productivity
- Validate retrievals from pelagic to near-shore environments.
- Assimilate observations in biogeochemical models to assess key properties (e.g., air-sea CO₂ flux, export)

SQ-3 Land-Ocean Interactions:

- Quantify concentrations and physical/optical properties of particles & dissolved material
- Validate retrievals from coastal to estuarine environments.
- Compare observables with ground-based and model-based land-ocean exchange in the coastal zone, physical properties (e.g., winds, SST, SSH, etc), and circulation.

SQ-4 Atmosphere-Ocean Interactions:

- Quantify ocean photobiochemical and photobiological processes and atmospheric aerosols
- Combine ocean and atmosphere observables with models and other remotely retrieved fields (e.g. temperature and wind speed) to evaluate (1) air-sea exchange of particulates, dissolved materials, and gases and (2) impacts on aerosol, cloud, and biological properties
- Validate retrievals from pelagic to near-shore environments

Approach (cont.)

SQ-5 Bio-physical Interactions:

- Compare observed ecosystem properties with measured physical ocean properties (e.g., winds, SST, SSH, OOI assets) and model-derived physical fields (e.g., ML dynamics, horizontal divergence)
- Estimate ocean radiant heating and assess feedbacks
- Validate from pelagic to near-shore environments

SQ-6 Algal Blooms and Consequences:

- Measure biomass, pigments, and abundance of key phytoplankton groups, including harmful algae
- Quantify bloom magnitudes, durations, and distributions
- Assess inter-seasonal and inter-annual variations
- Compare variability to changing environmental/physical properties
- Validate retrievals from pelagic to near-shore environments

SQ-7: Human Dimensions:

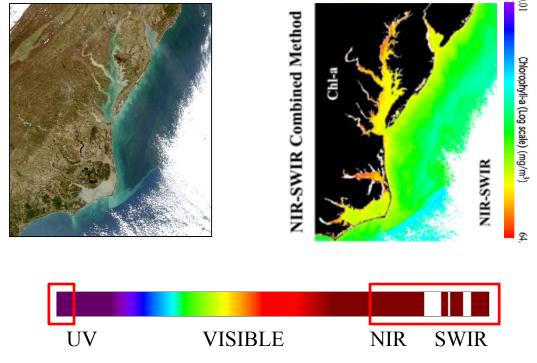
- Establish close linkages between science, operational, and resource management communities early in the planning phases of PACE and maintain feedbacks throughout mission life.
- Engage management and operational communities fully in science planning efforts
- Estimate the social and economic impacts of ocean ecology, including biodiversity, biogeochemical processes, and biological and chemical stocks and fluxes
- Understand the applications of PACE products for water quality assessments and pollution identification.
- Implement strong education and capacity building programs addressing national & international needs.

Targeted Ocean Retrievals

- Normalized water-leaving radiances
- Chlorophyll-a
- Diffuse attenuation coefficient (490 nm)
- Inherent optical properties
- Spectral K_d
- Euphotic depth
- Spectral remote sensing reflectance
- Particulate organic carbon concentration
- Primary production
- Calcite concentration
- Colored dissolved organic matter
- Photosynthetically available radiation
- Fluorescence line height
- Total suspended matter
- Trichodesmium concentration
- Particle size distributions & composition
- Phytoplankton carbon
- Dissolved organic matter/carbon
- Physiological properties
- Phytoplankton pigment absorption spectra
- Export production
- Functional/Taxonomic groups

	Geophysic	al Parameter	Baseline	Range		Threshold	Range		Comm	ents		
	Remote sensing	g reflectance (Rrs)	Rrs(340) 0.0011 Rrs(380) 0.0011 Rrs(412) 0.0010 Rrs(443) 0.0012 Rrs(490) 0.0022 Rrs(510) 0.0022 Rrs(531) 0.0021	- 0.020 sr ⁻¹ - 0.033 sr ⁻¹ - 0.024 sr ⁻¹ - 0.014 sr ⁻¹ - 0.011 sr ⁻¹	Rrs Rrs Rrs Rrs Rrs	(340) 0.0020 (380) 0.0030 (412) 0.0035 (443) 0.0038 (490) 0.0042 (510) 0.0036 (531) 0.0027	- 0.017 sr ⁻¹ - 0.028 sr ⁻¹ - 0.021 sr ⁻¹ - 0.012 sr ⁻¹ - 0.008 sr ⁻¹	are MO 344 fiel of 1,0	nges in the 412-6 e based on the See ODIS-AQUA dat 0, 380 and 683 m ld measurements oceanic and coas 000) extracted fro aBASS archive.	WiFS and a. Ranges at n are based on from a variety tal stations (n >	Atlantic ret cruises otrophic gyres to . N=481.	
9	EC	PH	Brs(547) 0.001 Rs(55502001 Rs(670) 0.00 Rs(678) 0.000 Rrs(683) 0.0000	0.000 sr ⁻¹ 0.008 sr ⁻¹ 0.002 sr ⁻¹ 0.002 sr ⁻¹ 0 - 0.012 sr ⁻¹	Rrs Rrs Rrs	(00) 0.000 (0.8) 0.000 (683) 0.0000	- 000 r ⁻¹ - 0.01 r ⁻¹ - 0.001 sr ⁻¹ - 0.001 sr ⁻¹	R	RA I	ME	an per carbonite uently insed a th inte (ju 8), to ter calcium. PIC iculate calcium	RS
	Inherent optica Absorptio - total abso	n coefficients 📃	$\begin{array}{c} Para \\ a(412) & 0.020 \\ a(443) & 0.020 \\ a(45) & 0.020 \\ a(45$	imet line	0(4	r de 12) 0.03 - 0.8 43) 0.03 - 0.7 24) 0.08 0.6 0.47 0.8	m ⁻¹		toy Lande, 19 Just Cont lues based on data ilippines, (PHILE the 20% values 1001:01		ig inductively- United Particles United Particles lium line with the ics calculated on PBES	22 mg m ³ and the 200 mg m ³ . In ironments higher served. reflect current iabilities for i using electronic
	 phytoplankton absorption (a_{gs}) detrial absorption (a_g) colored dissolved organic material absorption (a_{crost}) Backscatter coefficient (bb) Beam attenuation (c) 		a _{at} (443) 0.003 4 (443) 0.003	^{1.2} m ¹ uati	a _{rá} ((443) 0.007 - (443) 0.001 - 0 (443) 0.001 - 0 (443) 0.001 - 0	etail	Ne S	and actional values DMAD data (Mar elson et al 2010). om the ultra-oligo pific gyre were us wer limits of base uot et al., 2008; E	BIOSOPE data trophic South sed in assessing line ranges	m ultra- rbid coastal inimum and values of POC i field and satellite mg m ³ and	e.g., Coulter) and (e.g., LISST). epresent a desired relevant range m instrument/ pment.
			b _{tp} (443) 0.0003 c(412) 0.03 - 10		c(4	(443) 0.001 - 12) 0.1 - 0.5	m-1	bbj GS	10). p(443) values are SM (Maritorena e	t al. 2002) and	1 extreme cases of 10,000 mg m ⁻³ ed	field and satellite Field data are fro clude HPLC and nee measurement
	c(443) 0.03 - 10.0 c(555) 0.08 - 10.0					43) 0.1 - 0.5 55) 0.1 - 0.5			AA (Lee et al 200 odels applied to N	IODIS L3 data,	ield data. Surface ranges from 35 to	nee measurements
									plume DOC is 65 Arctic and tropic can exceed 1,000	50 umol L ⁴ for al rivers, but DOC	satellite retrievals to C _{phyto} following (2008).	
		Suspended Particulate Matter concentration (SPM)		25 - 70,000 mg m ⁻³		3	45 - 15,000 mg m ⁻³		n ⁻³	Values based on 271 field measurements from ultra- oligotrophic to turbid coastal		marily on MODIS tu data (NOMAD r evaluating
		Fluorescence Quantum (FQY)				0.0003 - 0.05 s hotons (absor	fluoresced bed photons)	-1	0.001 - 0.02 i photons (abso	luoresced orbed photons)	 following Behre which includes non-photochem 	MODIS L3 data enfeld et al. (2009), a correction for ical quenching that dues at low-light

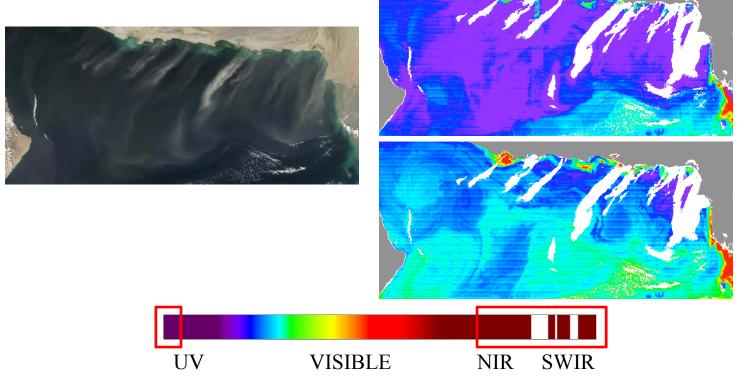
Targeted Ocean Retrievals



Measurement Class	Geophysical Parameters					
	Core Optical Variables					
radiometric quantities	$L_u(z,\lambda)$, $L_i(\lambda)$, $L_{sky}(\lambda)$, $E_d(z, \lambda)$, $E_s(\lambda)$, PAR(z)					
apparent optical properties (AOPs)	$K_{d}(\lambda)$, K_{PAR} , Z_{eu}					
inherent optical properties (IOPs)	a(z, λ), a _p (z, λ), a _{ph} (z, λ), a _d (z, λ), a _{CDOM} (z, λ), b _b (z, λ), c(z, λ)					
Biogeochemical State Variables & Processes (Secondary Variables)						
phytoplankton pigment concentrations	Chl, accessory pigments, carotenoids, etc.					
phytoplankton characteristics	C _{phyto} , taxonomic/functional groups, chlorophyll fluorescence					
particle population characteristics	SPM, POC, PIC, PSDs, $\beta(z, \lambda)$					
photobiochemical characteristics	DOC, CDOM fluorescence, MAAs, phycobili proteins					
production	NPP, NCP, nutrients					
Synthesis & N	Synthesis & Modeling Variables (Tertiary Variables)					
Fluxes & ecosystems	C export, air-sea CO_2 exchange, land-ocean material exchange					

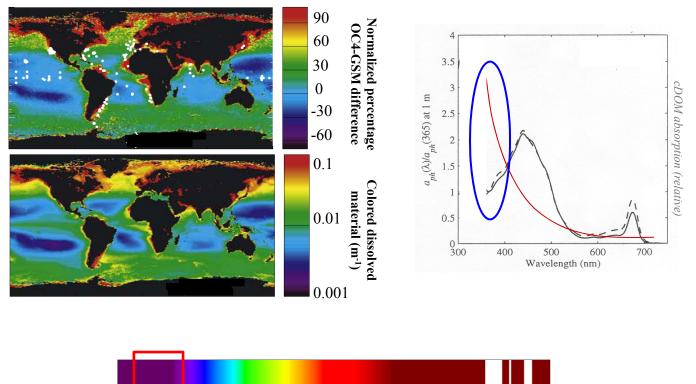
- ATMOSPHERIC CORRECTIONS
 - Spectral anchoring with UV band (~350 nm)
 - Open ocean bands in NIR [748 (10 nm bw), 820 (15 nm), 865 (40 nm)]
 - Turbid water SWIR [1230 (20 nm), 1640 (40 nm), 2130 (50 nm)]

- This is one of the important areas of overlap between PACE aerosol and ocean science communities



Wang, M. and W. Shi (2007) Optics Express, 15, 15722-15733.

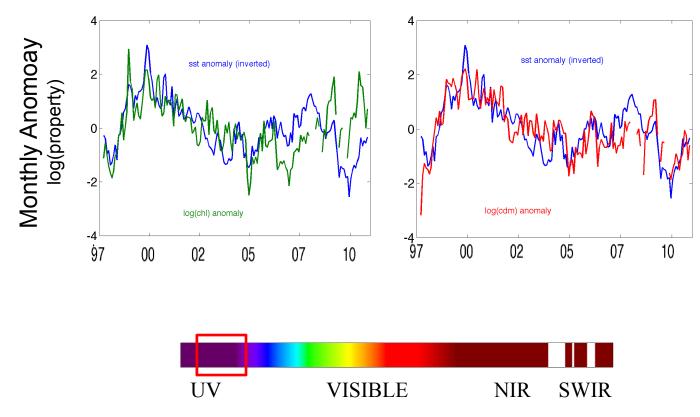
- ATMOSPHERIC CORRECTIONS
 - Spectral anchoring with UV band (~350 nm)
 - Open ocean bands in NIR [748 (10 nm bw), 820 (15 nm), 865 (40 nm)]
 - Turbid water SWIR [1230 (20 nm), 1640 (40 nm), 2130 (50 nm)]


- This is one of the important areas of overlap between PACE aerosol and ocean science communities

Wang, M. and W. Shi (2007) Optics Express, 15, 15722-15733.

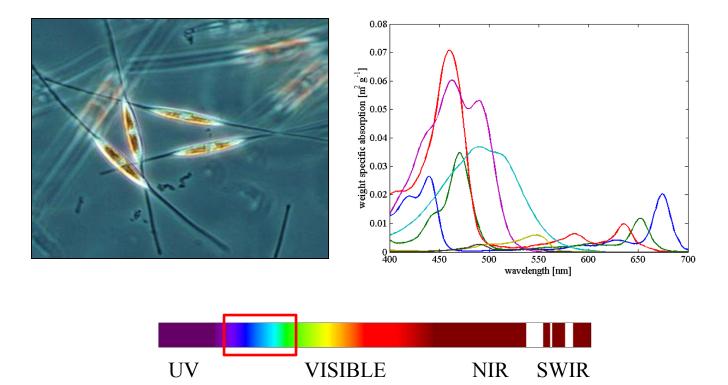
- ATMOSPHERIC CORRECTIONS
- CDOM / SEPARATION FROM PIGMENT ABSORPTION
 - Current uncertainty impacts NPP assessment by 16 Gt y⁻¹ (total \sim 50 Gt y⁻¹)
 - Near UV bands [360 (15 nm),380 (15 nm)]

UV VISIBLE NIR SWIR

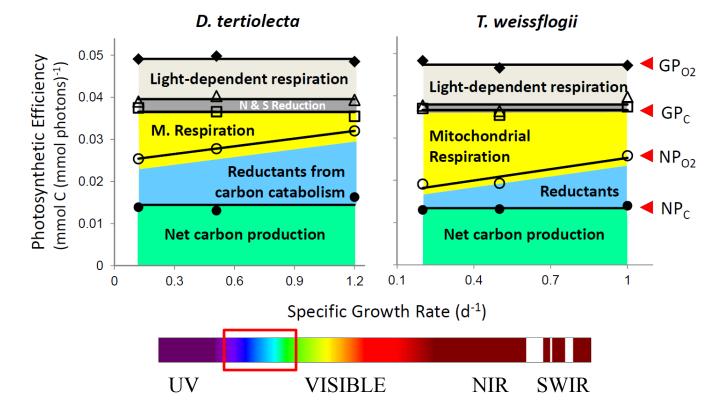

Siegel et al., GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L20605, doi:10.1029/2005GL024310, 2005

• ATMOSPHERIC CORRECTIONS

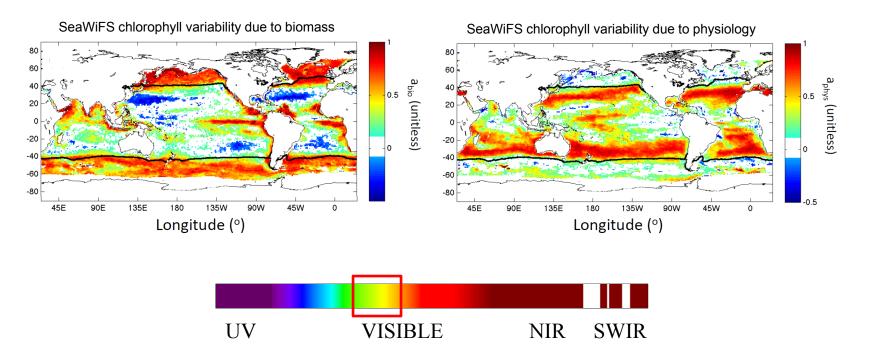
• CDOM / SEPARATION FROM PIGMENT ABSORPTION


- Current uncertainty impacts NPP assessment by 16 Gt y⁻¹ (total ~50 Gt y⁻¹)
- Near UV bands [360 (15 nm),380 (15 nm)]

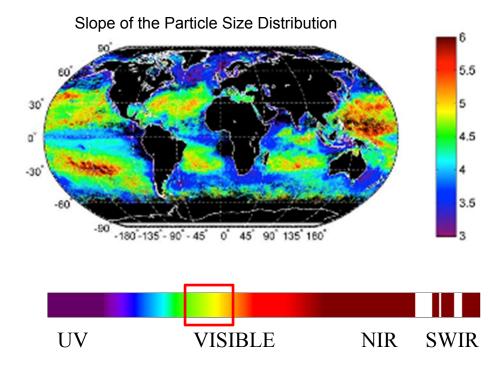
Siegel et al., GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L20605, doi:10.1029/2005GL024310, 2005



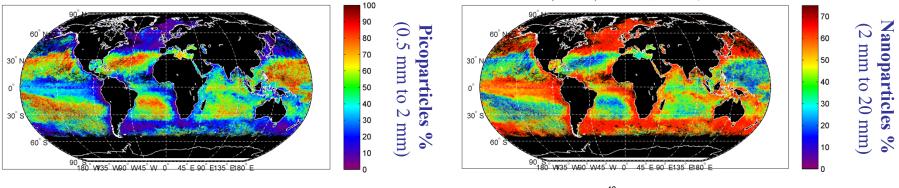
- ATMOSPHERIC CORRECTIONS
- CDOM-PIGMENT SEPARATION
- PHYTOPLANKTON ABSORPTION SPECTRA
 - Productivity keyed to total pigment absorption, not simply chlorophyll concentration
 - Assess both the amplitude and breadth of absorption spectra
 - 15 nm resolution in blue-green region

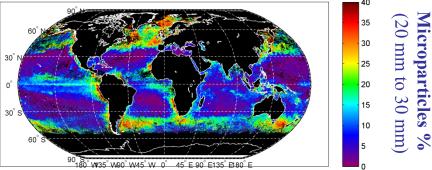


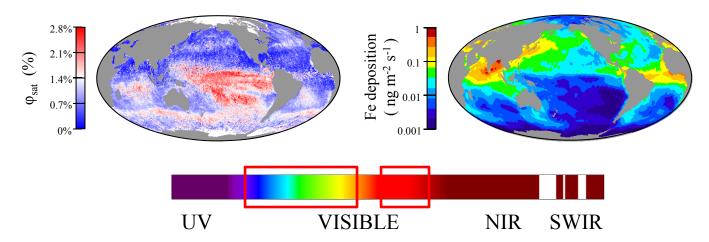
- ATMOSPHERIC CORRECTIONS
- CDOM-PIGMENT SEPARATION
- PHYTOPLANKTON ABSORPTION SPECTRA
 - Productivity keyed to total pigment absorption, not simply chlorophyll concentration
 - Assess both the amplitude and breadth of absorption spectra
 - 15 nm resolution in blue-green region



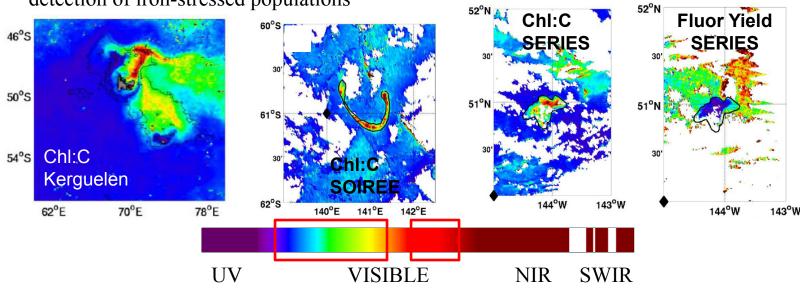
- ATMOSPHERIC CORRECTIONS
- CDOM-PIGMENT SEPARATION
- PHYTOPLANKTON ABSORPTION SPECTRA
- PHYTOPLANKTON CARBON; TOTAL PARTICULATE CARBON
 - Chlorophyll is not biomass
 - Carbon stocks related to particulate scattering coefficients and spectral slope
 - 15 nm bands in the region of minimum pigment absorption




- ATMOSPHERIC CORRECTIONS
- CDOM-PIGMENT SEPARATION
- PHYTOPLANKTON ABSORPTION SPECTRA
- PHYTOPLANKTON CARBON; TOTAL PARTICULATE CARBON
 - Chlorophyll is not biomass
 - Carbon stocks related to particulate scattering coefficients and spectral slope
 - 15 nm bands in the region of minimum pigment absorption


- ATMOSPHERIC CORRECTIONS
- CDOM-PIGMENT SEPARATION
- PHYTOPLANKTON ABSORPTION SPECTRA
- PHYTOPLANKTON CARBON; TOTAL PARTICULATE CARBON
 - Chlorophyll is not biomass
 - Carbon stocks related to particulate scattering coefficients and spectral slope
 - 15 nm bands in the region of minimum pigment absorption

- ATMOSPHERIC CORRECTIONS
- CDOM-PIGMENT SEPARATION
- PHYTOPLANKTON ABSORPTION SPECTRA
- PHYTOPLANKTON/TOTAL PARTICULATE CARBON
- PHYTOPLANKTON PHYSIOLOGY
 - How do we interpret observed chlorophyll trends?
 - How do we account for unique nutrient effects?
 - What are the ecological responses to atmospheric nutrient deposition?
 - Ratio of pigment absorption to phytoplankton carbon general light and nutrient effects
 - Chlorophyll fluorescence quantum yield [665 (10 nm), 678 (10 nm), 710 (15 nm)] –

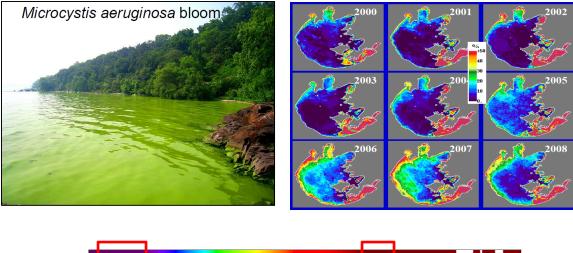
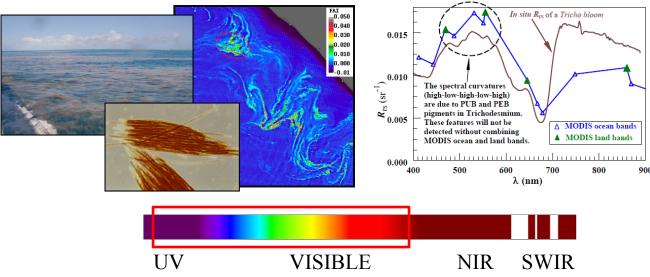

detection of iron-stressed populations

Behrenfeld et al. Biogeosciences 6, 779-794, 2009.

- ATMOSPHERIC CORRECTIONS
- CDOM-PIGMENT SEPARATION
- PHYTOPLANKTON ABSORPTION SPECTRA
- PHYTOPLANKTON/TOTAL PARTICULATE CARBON
- PHYTOPLANKTON PHYSIOLOGY
 - How do we interpret observed chlorophyll trends?
 - How do we account for unique nutrient effects?
 - What are the ecological responses to atmospheric nutrient deposition?
 - Ratio of pigment absorption to phytoplankton carbon general light and nutrient effects
 - Chlorophyll fluorescence quantum yield [665 (10 nm), 678 (10 nm), 710 (15 nm)] -

detection of iron-stressed populations

- ATMOSPHERIC CORRECTIONS
- CDOM-PIGMENT SEPARATION
- PHYTOPLANKTON ABSORPTION SPECTRA
- PHYTOPLANKTON/TOTAL PARTICULATE CARBON
- PHYTOPLANKTON PHYSIOLOGY
- EUTROPHIC WATERS / HARMFUL ALGAL SPECIES
 - How are bloom events changing? Duration, extent, timing, composition?
 - -'Red-edge' algorithms for pigment stocks (red-NIR band differences)
 - Near-UV and/or 710 nm band for HABs

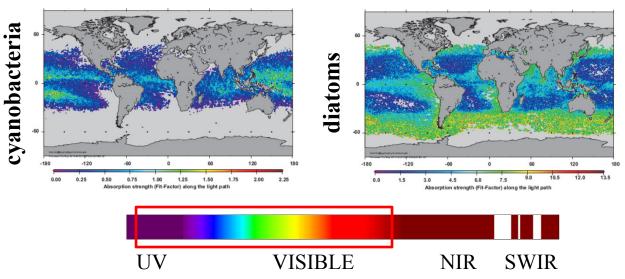
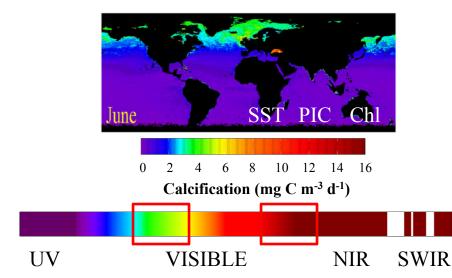
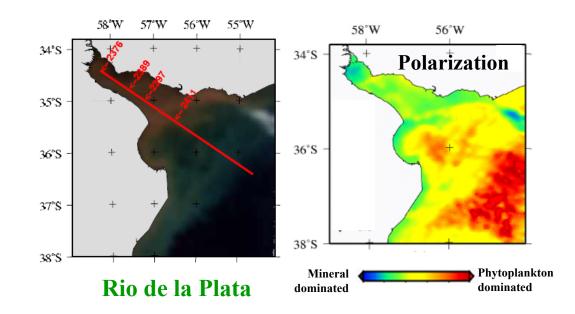
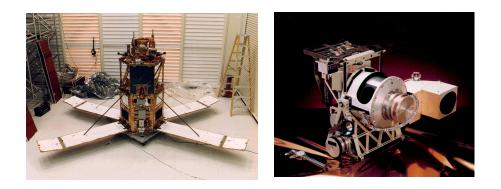


Image & data from Chuanmin Hu, Univ. South Florida


- ATMOSPHERIC CORRECTIONS
- CDOM-PIGMENT SEPARATION
- PHYTOPLANKTON ABSORPTION SPECTRA
- PHYTOPLANKTON/TOTAL PARTICULATE CARBON
- PHYTOPLANKTON PHYSIOLOGY
- EUTROPHIC WATERS / HARMFUL ALGAL SPECIES
- PHYTOPLANKTON FUNCTIONAL GROUPS
 - Phytoplankton community composition is ecologically and biogeochemically important
 - How is it changing? What detail can we derive from space?
 - 'Multi-band' approaches for targeted organism
 - 'Hyperspectral' (5 nm) derivative analysis for multiple broad groups

- ATMOSPHERIC CORRECTIONS
- CDOM-PIGMENT SEPARATION
- PHYTOPLANKTON ABSORPTION SPECTRA
- PHYTOPLANKTON/TOTAL PARTICULATE CARBON
- PHYTOPLANKTON PHYSIOLOGY
- EUTROPHIC WATERS / HARMFUL ALGAL SPECIES
- PHYTOPLANKTON FUNCTIONAL GROUPS
 - Phytoplankton community composition is ecologically and biogeochemically important
 - How is it changing? What detail can we derive from space?
 - 'Multi-band' approaches for targeted organism
 - 'Hyperspectral' (5 nm) derivative analysis for multiple broad groups


- ATMOSPHERIC CORRECTIONS
- CDOM-PIGMENT SEPARATION
- PHYTOPLANKTON ABSORPTION SPECTRA
- PHYTOPLANKTON/TOTAL PARTICULATE CARBON
- PHYTOPLANKTON PHYSIOLOGY
- EUTROPHIC WATERS / HARMFUL ALGAL SPECIES
- PHYTOPLANKTON FUNCTIONAL GROUPS
- PARTICULATE INORGANIC CARBON
 - Calcifying organisms play a key role in carbon export and surface carbon chemistry
 - Complication of POC from backscattering coefficients
 - Green, Red, NIR bands for open ocean and coastal waters


- ATMOSPHERIC CORRECTIONS
- CDOM-PIGMENT SEPARATION
- PHYTOPLANKTON ABSORPTION SPECTRA
- PHYTOPLANKTON/TOTAL PARTICULATE CARBON
- PHYTOPLANKTON PHYSIOLOGY
- EUTROPHIC WATERS / HARMFUL ALGAL SPECIES
- PHYTOPLANKTON FUNCTIONAL GROUPS
- PARTICULATE INORGANIC CARBON
- LAND-OCEAN MATERIAL EXCHANGE
 - Distinguishing mineral and biotic particles through polarization properties

- ATMOSPHERIC CORRECTIONS
- CDOM-PIGMENT SEPARATION
- PHYTOPLANKTON ABSORPTION SPECTRA
- PHYTOPLANKTON/TOTAL PARTICULATE CARBON
- PHYTOPLANKTON PHYSIOLOGY
- EUTROPHIC WATERS / HARMFUL ALGAL SPECIES
- PHYTOPLANKTON FUNCTIONAL GROUPS
- PARTICULATE INORGANIC CARBON
- LAND-OCEAN MATERIAL EXCHANGE
- HERITAGE OCEAN COLOR BANDS

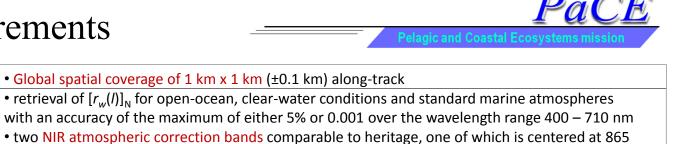
- Flexible reconstruction: 412, 443, 490, 510, 532, 555, 665, 678, 710, 765, 865 nm

Threshold Requirements

		imum v	and specifications. num value at L _{typ} . mW/cm ² str.			
_	λ	Band Width (nm)	Spatial Resol. (km ²)	L _{typ}	L _{max}	SNR- Spec
	350	15	1	7.46	35.6	300
	360	15	1	7.22	37.6	1000
	385	15	1	6.11	38.1	1000
St	412	15	1	7.86	60.2	1000
1	425	15	1	6.95	58.5	1000
•	443	15	1	7.02	66.4	1000
р	460	15	1	6.83	72.4	1000
H	475	15	1	6.19	72.2	1000
õ	490	15	1	5.31	68.6	1000
aggregate band' list	510	15	1	4.58	66.3	1000
IT .	532	15	1	3.92	65.1	1000
	555	15	1	3.39	64.3	1000
Ū.	583	15	1	2.81	62.4	1000
5	617	15	1	2.19	58.2	1000
50	640	10	1	1.90	56.4	1000
5	655	15	1	1.67	53.5	1000
•	665	10	1	1.60	53.6	1000
	678	10	4	1.45	51.9	2000
	710	15	1	1.19	48.9	1000
	748	10	1	0.93	44.7	600
-	820	15	1	0.59	39.3	600
	865	40	1	0.45	33.3	600
	1245	20	1	0.088	15.8	250
	1640	40	1	0.029	8.2	180
	2135	50	1	0.008	2.2	15

High spectral resolution range (5 nm)

L_{typ} = typical top-of-atmosphere clear sky ocean radiances

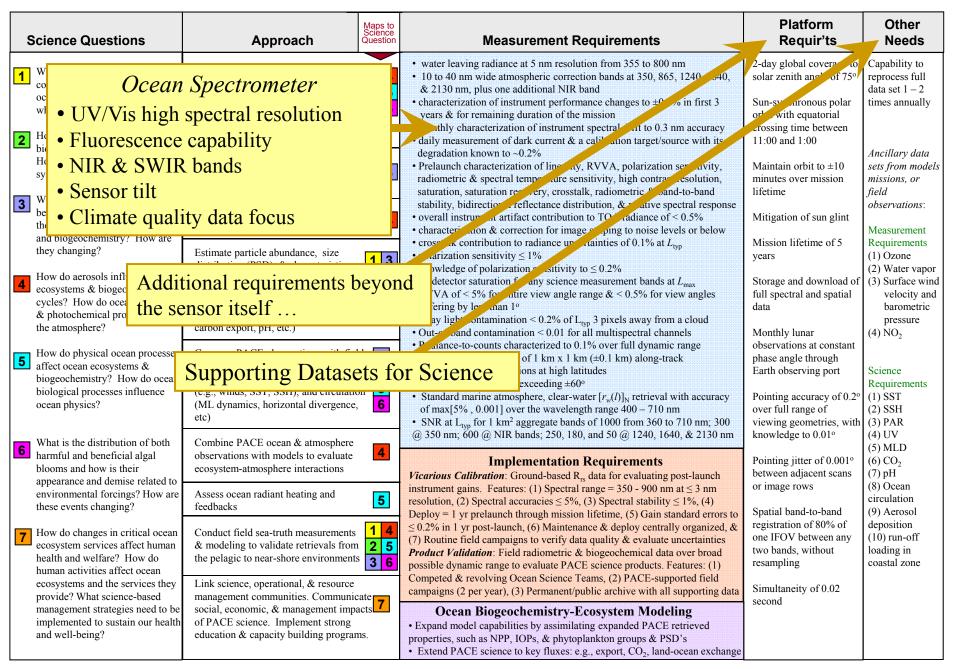

Threshold Requirements

Orbit	sun-synchronous polar orbit					
or bit	 equatorial crossing time between 11:00 and 1:00 					
	 orbit maintenance to ±10 minutes over mission lifetime 					
Clobal Coverage	 2-day global coverage to solar zenith angle of 75° 					
Global Coverage	mitigation of sun glint					
	 multiple daily observations at high latitudes 					
	 view zenith angles not exceeding ±60° 					
	mission lifetime of 5 years					
	•pointing accuracy of 2 IFOV and knowledge equivalent to 0.1 IFOV over the full range of viewing					
Navigation and Registration	geometries (e.g., scan and tilt angles)					
	 pointing jitter of 0.01 IFOV between adjacent scans or image rows 					
	• spatial band-to-band registration of 80% of one IFOV between any two bands, without resampling					
	simultaneity of 0.02 second					
	• characterization of all detectors and optical components through monthly lunar observations					
	through Earth-viewing port					
	• characterization of instrument performance changes to ±0.2% within the first 3 years and					
Instrument Performance	maintenance of this accuracy thereafter for the duration of the mission					
Tracking	 monthly characterization of instrument spectral drift to an accuracy of 0.3 nm 					
	• daily measurement of dark current and observations of a calibration target/source, with knowledge					
	of daily calibration source degradation to ~0.2%					
In standard Antife sta	• Prelaunch characterization of linearity, RVVA, polarization sensitivity, radiometric and spectral					
Instrument Artifacts	temperature sensitivity, high contrast resolution, saturation, saturation recovery, crosstalk,					
	radiometric and band-to-band stability, bidirectional reflectance distribution, and relative spectral					
	response					
	 overall instrument artifact contribution to TOA radiance of <0.5% 					
	 characterization & correction for image striping to noise levels or below 					
	• crosstalk contribution to radiance uncertainties 0.1% at L_{typ}					
	• polarization sensitivity of $\leq 1\%$ and knowledge of polarization sensitivity to $\leq 0.2\%$					
	 no detector saturation for any science measurement bands at L_{max} 					
	• RVVA of <5% for the entire view angle range and by <0.5% for view angles that differ by less than 1°					
	• Stray light contamination < 0.2% of L _{tvp} 3 pixels away from a cloud					
	• out-of-band contamination of <0.01 for all multispectral channels					
	• radiance-to-counts relationship characterized to 0.1% over full dynamic range (L_{typ} to L_{max})					

pace Discard Coastal Ecosystems mission

Threshold Requirements

Spatial Resolution



Atmospheric Corrections	• retrieval of $[r_w(l)]_N$ for open-ocean, clear-water conditions and standard marine atmospheres with an accuracy of the maximum of either 5% or 0.001 over the wavelength range 400 – 710 nm				
	• two NIR atmospheric correction bands comparable to heritage, one of which is centered at 865				
	nm				
	NUV band centered near 350				
	 SWIR bands centered at 1240, 1640, and 2130 nm 				
Science Spectral Bands	5 nm spectral resolution from 355 to 800 nm				
Science Spectral Bands	 complete ground station downlink and archival of 5 nm data. 				
Signal-to-noise	 SNR at L_{tvp} of 1000 from 360 to 710 nm; 300 @ 350 nm; 600 @ NIR bands; 250, 180, and 15 @ 				
	1240, 1640, & 2130 nm				
Data Reprocessing	 full reprocessing capability of all PACE data at a minimum frequency of 1 – 2 times annually. 				

PACE Threshold-mission Ocean Science Traceability Matrix (STM)

Science Questions	Approach Maps to Science Question	Measurement Requirements	Platform Requir'ts	Other Needs
 What are the standing stocks, compositions, and productivity of cean ecosystems? How and why are they changing? How and why are ocean 	Quantify phytoplankton biomass, pigments, optical properties, key groups (functional/HABS), & estimate productivity using bio-optical models, chlorophyll fluorescence, & ancillary physical properties (e.g., SST, MLD)	 water leaving radiance at 5 nm resolution from 355 to 800 nm 10 to 40 nm wide atmospheric correction bands at 350, 865, 1240, 1640, & 2130 nm, plus one additional NIR band characterization of instrument performance changes to ±0.2% in first 3 years & for remaining duration of the mission monthly characterization of instrument spectral drift to 0.3 nm accuracy daily measurement of dark current & a calibration target/source with its 	2-day global coverage to solar zenith angle of 75° Sun-synchronous polar orbit with equatorial crossing time between 11:00 and 1:00	Capability to reprocess full data set 1 – 2 times annually
 Viogeochemical cycles changing? How do they infruence the Earth system? What are the material exchanges where and & ocean? How do 	Measure particulate & dissolved carbon pools, their characteristics & optical properties Quantify ocea	 degradation known to ~0.2% Prelaunch characterization of linearity, RVVA, polarization sensitivity, radiometric & spectral temperature sensitivity, high contrast resolution, saturation, saturation recovery, crosstalk, radiometric & band-to-band istribution, & relative spectral response tion to TOA radiance of < 0.5% 	Maintain orbit to ±10 minutes over mission lifetime Mitigation of sun glint	Ancillary data sets from models missions, or field observations:
 they innernce coastal ecosystems and biogeochemistry? How are they changing? How do aerosols influence ocean worksom & biogeochemical 	du runtion (I	Focused hage striping to noise levels or below nertainties of 0.1% at Lyp	Mission lifetime of 5 years Storage and download of	Measurement Requirements (1) Ozone (2) Water vapor (3) Surface wind
cycles? How do ocean biological & photochemical processes affect the atmosphere?	Assimilation biogeosticate carbon export Compare PAC and model dat	Science $f_{\text{typ}} S$ is a way from a cloud for all multispectral channels 0.1% over full dynamic range $km (\pm 0, 1 \text{ km})$ along-track	full spectral and spatial data Monthly lunar observations at constant phase angle through	velocity and barometric pressure (4) NO ₂
5 affect ocean ecosystems & biogeochemistry? How do ocean biological processes influence ocean physice.	and model dat land-ocean ex (e.g., winds, SST, SSH), and circulation (ML dynamics, horizontal divergence, etc)	 Standard marine atmosphere, clear-water [r_w(l)]_N retrieval with accuracy of max[5%, 0.001] over the wavelength range 400 – 710 nm SNR at L_{typ} for 1 km² aggregate bands of 1000 from 360 to 710 nm; 300 	Earth observing port Pointing accuracy of 0.2° over full range of viewing geometries, with	Science Requirements (1) SST (2) SSH (3) PAR
6 that is the distribution of both harmful and beneficial algal blooms and now is their appearance and demise related to environmental forcings? How are	Combine PACE ocean & atmosphere observations with models to evaluate ecosystem-atmosphere interactions Assess ocean radiant heating and foodbacks	@ 350 nm; 600 @ NIR bands; 250, 180, and 50 @ 1240, 1640, & 2130 nm Implementation Requirements <i>Vicarious Calibration</i> : Ground-based R_{rs} data for evaluating post-launch instrument gains. Features: (1) Spectral range = 350 - 900 nm at \leq 3 nm	knowledge to 0.01° Pointing jitter of 0.001° between adjacent scans or image rows	(4) UV (5) MLD (6) CO ₂ (7) pH (8) Ocean circulation
there events changing?7 How do changes in critical ocean ecosystem services affect human health and welfare? How do human activities affect ocean	feedbacksConduct field sea-truth measurements & modeling to validate retrievals from the pelagic to near-shore environments142536	resolution, (2) Spectral accuracies $\leq 5\%$, (3) Spectral stability $\leq 1\%$, (4) Deploy = 1 yr prelaunch through mission lifetime, (5) Gain standard errors to $\leq 0.2\%$ in 1 yr post-launch, (6) Maintenance & deploy centrally organized, & (7) Routine field campaigns to verify data quality & evaluate uncertainties Product Validation : Field radiometric & biogeochemical data over broad possible dynamic range to evaluate PACE science products. Features: (1) Competed & revolving Ocean Science Teams, (2) PACE-supported field		(9) Aerosol deposition (10) run-off loading in coastal zone
ecosystems and the services they provide? What science-based management strategies need to be implemented to sustain our health and well-being?	Link science, operational, & resource management communities. Communicate social, economic, & management impacts of PACE science. Implement strong education & capacity building programs.	 Competed & revolving occan selence realis, (2) FACE-supported real campaigns (2 per year), (3) Permanent/public archive with all supporting data Ocean Biogeochemistry-Ecosystem Modeling Expand model capabilities by assimilating expanded PACE retrieved properties, such as NPP, IOPs, & phytoplankton groups & PSD's Extend PACE science to key fluxes: e.g., export, CO₂, land-ocean exchang 	second	

PACE Threshold-mission Ocean Science Traceability Matrix (STM)

PACE Threshold-mission Ocean Science Traceability Matrix (STM)

Science Questions	Approach	Maps to Science Question	Measurement Requirements	Platform Requir'ts	Other Needs
1 What are the standing stocks, compositions, and productivity of ocean ecosystems? How and	Quantify phytoplankton biomass, pigments, optical properties, key groups (functional/HABS), & estimate	1 4 2 5	 water leaving radiance at 5 nm resolution from 355 to 800 nm 10 to 40 nm wide atmospheric correction bands at 350, 865, 1240, 1640, & 2130 nm, plus one additional NIR band 	2-day global coverage to solar zenith angle of 75°	Capability to reprocess full data set $1-2$
why are they changing?	productivity using bio-optical models, chlorophyll fluorescence, & ancillary	3 <mark>6</mark>	 characterization of instrument performance changes to ±0.2% in first 3 years & for remaining duration of the mission monthly characterization of instrument spectral drift to 0.3 nm accuracy 	Sun-synchronous polar orbit with equatorial crossing time between	times annually
2 How and why are ocean biogeochemical cycles changing?	physical properties (e.g., SST, MLD)		• daily measurement of dark current & a calibration target/source with its dependent in the second	11:00 and 1:00	4
How do they influence the Earth system?	Measure particulate &dissolved carbon pools, their characteristics & optical properties	23	 degradation known to ~0.2% Prelaunch characterization of linearity, RVVA, polarization sensitivity, radiometric & spectral temperature sensitivity, high contrast resolution, saturation, saturation recovery, crosstalk, radiometric & band-to-band 	Maintain orbit to ±10 minutes over mission lifetime	Ancillary data sets from models missions, or field
3 What are the material exchanges between land & ocean? How do they influence coastal ecosystems	Quantify ocean photobiochemical & photobiological processes	2 4	 saturation, saturation recovery, closstatic, radionetric & band-to-band stability, bidirectional reflectance distribution, & relative spectral response overall instrument artifact contribution to TOA radiance of < 0.5% characterization & correction for image striping to noise levels or below 	Mitigation of sun glint	observations: Measurement
and biogeochemistry? How are they changing?	Estimate particle abundance, size distribution (PSD), & characteristics	<mark>1</mark> 3	 crosstalk contribution to radiance uncertainties of 0.1% at L_{typ} polarization sensitivity ≤ 1% 	Mission lifetime of 5 years	Requirements (1) Ozone (2) Water vapor
How do aerosols influence ocean ecosystems & biogeochemical cycles? How do ocean biological & photochemical processes affect	Assimilate PACE observations in ocean biogeochemical model fields to evaluate key properties (e.g., air-sea CO ₂ flux,	2 4	 knowledge of polarization sensitivity to ≤ 0.2% no detector saturation for any science measurement bands at L_{max} RVVA of < 5% for entire view angle range & < 0.5% for view angles differing by less than 1° 	Storage and download of full spectral and spatial data	(3) Surface wind velocity and barometric
the atmosphere?	carbon export, pH, etc.)		 Stray light contamination < 0.2% of L_{typ} 3 pixels away from a cloud Out-of-band contamination < 0.01 for all multispectral channels 	Monthly lunar	pressure (4) NO ₂
 How do physical ocean processes affect ocean ecosystems & biogeochemistry? How do ocean 	Compare PACE observations with field- and model data of biological properties, land-ocean exchange, physical propertie:	4	 Radiance-to-counts characterized to 0.1% over full dynamic range Global spatial coverage of 1 km x 1 km (±0.1 km) along-track Multiple daily observations at high latitudes 	observations at constant phase angle through Earth observing port	Science
biological processes influence	Field validation and calibration, new		 View zenith angles not exceeding ±60° Standard marine atmosphere, clear-water [r_w(l)]_N retrieval with accuracy of max[5%, 0.001] over the wavelength range 400 – 710 nm SNR at L_{typ} for 1 km² aggregate bands of 1000 from 360 to 710 nm; 300 	Pointing accuracy of 0.2° over full range of viewing geometries, with	Requirements (1) SST (2) SSH (3) PAR
measurements, p	process studies, and		(a) 350 nm ; 600 (a) NIR bands; 250 , 180 , and 50 (a) 1240 , 1640 , & 2130 nm	knowledge to 0.01°	(4) UV (5) MLD
_	pment are central t		Implementation Requirements Vicarious Calibration: Ground-based R _{rs} data for evaluating post-launch	Pointing jitter of 0.001° between adjacent scans	(6) CO ₂ (7) pH
	required in flight		instrument gains. Features: (1) Spectral range = $350 - 900$ nm at ≤ 3 nm solution, (2) Spectral accuracies $\leq 5\%$, (3) Spectral stability $\leq 1\%$, (4)	or image rows	(8) Ocean circulation
project budget			ploy = 1 yr prelaunch through mission lifetime, (5) Gain standard errors to $\leq 0.2\%$ in 1 yr post-launch, (6) Maintenance & deploy centrally organized, & (7) Routine field campaigns to verify data quality & evaluate uncertainties	Spatial band-to-band registration of 80% of one IFOV between any	(9) Aerosoldeposition(10) run-off
health and welfare? How do human activities affect ocean	the pelagic to near-shore environments	36	Product Validation: Field radiometric & biogeochemical data over broad possible dynamic range to evaluate PACE science products. Features: (1) Competed & revolving Ocean Science Teams, (2) PACE-supported field	two bands, without resampling	loading in coastal zone
Models are esser	ntial for achieving	7	campaigns (2 per year), (3) Permanent/public archive with all supporting data Ocean Biogeochemistry-Ecosystem Modeling	Simultaneity of 0.02 second	
PACE science of	ojectives		Expand model capabilities by assimilating expanded PACE retrieved properties, such as NPP, IOPs, & phytoplankton groups & PSD's		
			• Extend PACE science to key fluxes: e.g., export, CO ₂ , land-ocean exchange		

Measurement Goals

Accuracy: Retrieval of normalized $[r_{\mu}(l)]_{N}$ for open-ocean, clear-water conditions and standard marine atmospheres with an accuracy of the maximum of either 10% or 0.002 over the wavelength range of 350 – 395 nm *Aerosol heights*: Identified approach or measurement capacity for evaluating/measuring aerosol vertical distributions and type for improved atmospheric corrections. Atmospheric correction: SWIR atmospheric correction band at 2130 nm with a SNR of 100. *Coverage*: 1-day global coverage; Coverage to a solar zenith angle >75° **Crossing time:** Noon equatorial crossing time (±10 min) *Instrument artifact*: Overall instrument artifact contribution to TOA radiance retrievals of <0.2%. *Navigation and Registration*: pointing knowledge of 0.05 IFOV; band-to-band registration of 90% of one IFOV; simultaneity of 0.01 second Nitrogen dioxide: Identified approach for characterizing NO₂ and ozone concentrations at sufficient accuracy for improving atmospheric corrections Mission lifetime: 10 years Performance changes: Characterization of instrument performance changes to ±0.1% within 3 years and maintenance of this accuracy thereafter **Saturation:** No detector saturation for any science measurement bands up to $1.2 \times L_{max}$ Signal-to-noise: SNR for bio-optical science bands and/or atmospheric correction bands greater than those specified for mission threshold requirements Spatial resolution: Spatial resolution of 1 km² (±10%) at all scan angles; Along-track spatial resolution of 250 m x 250 m to 500 m x 500 m for inland, estuarine, coastal, and shelf area retrievals for all bands or a subset of bands. Spectral coverage: 5 nm spectral coverage from 800 to 900 nm

Spectral subsampling: ~1-2 nm resolution from 655 to 710 nm for refined characterization of the chlorophyll fluorescence spectrum

Water vapor: Spectral measurement band centered at 820 nm or 940 nm to determine water vapor content

