The biological pump: vertical migration

STEINDER

The biological pump

- Regional differences (community structure)
- Long-term changes
- Stoichiometry
- Modeling the biogeochemical impact
- Importance of different taxa
- Conclusions

Let's put this in perspective

Zooplankton vertical biomass profiles in N. Pacific

Daytime DVM depths & surface to mesopelagic O₂ gradients

Linear correlation with surface to mesopelagic O₂ gradients explains 45 % of the DVM depth variance

Bianchi, Galbraith, Carozza, Mislan, & Stock (2013)

Regional comparison of active transport (an example)

Site	Active flux (mg C/m2/d)	Trap POC flux @150m (mg C/m2/d)	Active transport/ Trap POC flux (%)
BAIS (annual)	(4)	(29)	(14 %)
ALOHA HOT (annual)	2-8 (5)	18 (29)	11-44 % (19 %)
Canary Islands	4	10-12	~ 36%
Equatorial Pacific	4-8	23 - 29	4-25%
K2- Subarctic Pacific	16-46	23 - 62	26-200%

(Zhang and Dam 1997; Le Borgne & Rodier 1997, Hernández-León et al. 2001, Steinberg et al. 2008, 2012; Hannides et al. 2009)

Increase in mesozooplankton biomass (top 150 m) at BATS

Steinberg, Lomas, & Cope (2012)

Increased more at night

Increase in active transport and fecal pellet production at BATS

Annual migratory $CO_2 + DOC + POC$ flux across 150 m

Annual fecal pellet production (egestion) in top 150 m

= 5-33% of POC flux

= 28-89% of POC flux

Steinberg, Lomas, & Cope (2012)

Stoichiometry of active transport

North Pacific subtropical gyre- HOT station ALOHA

Active transport especially important mechanism for phosphorus (P) removal from the euphotic zone

Enhanced P-limitation of biological production in the N. Pacific subtropical gyre

Hannides, Landry, et al. (2009)

Modeling the biogeochemical impact of DVM

 K2
 ALOHA
 EQPAC

 DVM flux : NPP
 0.07
 0.01
 0.03

 DVM flux : POC flux
 0.3
 0.14
 0.38

(export calculated at euphotic zone boundary)

Bianchi, Stock, Galbraith, & Sarmiento (2013)

Importance of different taxa

Stations in the CA current

Stukel, Ohman, Benitez-Nelson, & Landry (2013)

fishes, micronekton

Deep scattering layer in Monterey Bay Canyon with aggregation of myctophids

38 kHz signal from sonic scattering layer

Bruce Robison, MBARI

Carbon export by mesopelagic fishes in NE Pacific

Fish C export as fraction of satellite-derived POC export

Individual-based metabolic modeling using the catch from 77 mesopelagic trawls

Fish (90% myctophids) DVM ~ 5-22% of passive C export

Davison, Checkley, Koslow, & Barlow (2013)

** undersampling of micronekton due to low capture efficiency of nets- mesopelagic fish biomass may be 1 order of magnitude higher than current estimate (Irigoien et al. 2014)

Ontogenetic (seasonal) vertical migration Can be important at high latitudes

Neocalanus spp. copepods in subarctic Pacific

Site in Pacific	Ontogenetic migrant flux- (mg C/m ² /y)	Active transport/ Trap POC flux @ 1000m (%)
Station P	5000	185 %
Oyashio	4300	91%
K2	246 + 1719	9% 64%

DVM @ K2 = 16-46 mg C/m²/d –summer @150 m

Bradford-Grieve et al. (2001), Kobari et al. (2003, 2008)

Summary/ parting thoughts

- Active transport on average ~15-20% of passive flux, but exceeds passive flux in seasons or regions of high migrating zooplankton biomass
- Changes in zooplankton biomass or community composition over time affects efficiency of bio pump
- Metabolism by migrators at depth not necessarily Redfield, and excretion of DOM significant. Supports mesopelagic metabolism!
- Active transport now being modeled, helps formulate and test hypotheses about global patterns, yay!
- Contribution of fish & invertebrate micronekton not well known
- Bring on observing systems, new technology

Thank you!

