CO₂ fluxes across the air-ice interface

Delille B.

Champenois W., Heinesch B., Zhou J., Schoemann V., Carnat G., N.-X. Geilfus, D. Delille, Moreau S., Vancoppenolle M., and Tison J.-L.

> Jniversité de Liège

Outlines

- o Sea ice permeability
- Spring and summer budgets of air-ice CO₂ fluxes
- Gaps in current knowledge
 - Fall and winter release of CO₂
 - Discrepancy between eddy-covariance and chamber measurements

A long lived dogma...

Weiss et al 1979, Gordon et al 1984, Poisson and Chen 1987

Weddel Sea pack ice effectively blocks the air-sea exchange of gases »

No evidence of marked ventilation is found in deep waters of the Weddel Sea. Thus sea ice appears to prevent air-sea exchange.

Outlines

Kelley & Gosink 1970s-80s

• « unlike ices from pure freshwater, sea ice is a highly permeable medium for gases »

• They found rate of CO₂ penetration about 60 cm h⁻¹ at -7°C

• « gas migration through sea ice is an important factor in ocean-atmosphere winter communication particularly when the surface temperature is $> -10^{\circ}$

» (Gosink et al., 1976. Nature 263: 41)

Golden et al., 1998

 Theoretical and experimental evidence that sea ice permeability increases considerably above -5°C, the so-called "law of fives" (Golden et al., 1998. Science 282: 2238)

Science 282: 2238

10⁶ km2

(IPCC, 2001)

27.7

27.6

26.0

17.8

17.5

15.5

13.7

13.5

10.4

5.6

TAÏGA

CROPLANDS

TEMPERATE

FOREST

TUNDRA

Raw mean of spring air-ice CO2
fluxes-1 gC m-2 month-1Spring surface of antarctic sea ice
cover20* 106 km²Time length of fluxes2 monthsOverall spring antarctic-1 gC m-2 month-1

air-ice CO₂ fluxes

Overall S.O. open water fluxes (Takahashi et al. 2009)

Betty Lodd Read

- 0.04 PgC yr⁻¹

- 0.04 PgC

Ispol drift experiment First and multi-year pack ice

Simba drift experiment First year pack ice AA03-V1 cruise *R. V. Aurora Australis* Sep-Oct 2003 First year pack ice

Aurora (Sep-oct 2003)
Isopl (Dec 2005)
Simba (Oct 2007)

O Aurora (Sep-oct 2003)

O Isopl (Dec 2005)

O Simba (Oct 2007)

Scaled using sea ice temperature from NEMO-LIM3 model

Ice-air CO2 flux

Spring air-ice fluxes of CO_2 for the Antarctic sea ice cover is assessed to -0.029 PgC from October to December

Air-ice fluxes: -0.029 Pg

Air-sea fluxes south of 50°S: -0.04 Pg yr-1

Spring/early summer antarctic sea ice cover would represent an additional sink of about 70% of the overall CO₂ sink of the Southern Ocean.

We only consider areas with ice concentration over 65 % and we did not accounted flooded areas.

Is it realistic?

Independent assessment

	related CO ₂ transfer from the atmosphere (mmol m ⁻²)
temperature increase and related dilution	
CaCO ₃ dissolution	-57

Estimates of potential air-ice CO_2 fluxes related to spring and summer physical and biogeochemical processes observed during the 2003/V1 and ISPOL cruises. Flux representative of a 4 months period.

The overall CO₂ fluxes reach 142 mmol m^{-2.}

Taking into account a mean value for the Antarctic sea ice edge surface area of 16×10^6 km², the corresponding overall CO₂ fluxes account for 0.029 PgC.

This compares favourably with our previous estimate of an additional sink of 0.025 PgC.

What happens when ice melts ?

knowing DIC and TA of ice, it is possible to derive the decrease of pCO_2 of surface water related to melting of the ice then to compute related uptake of atmospheric CO_2

Net CO₂ fluxes without ikaite formation - including ikaite formation To be compared to fluxes of polar open oceans -

-0.033 PgC yr⁻¹ -0.083 PgC yr⁻¹ -0.199 PgC yr⁻¹

Sea ice accounts for 17 to 42 % of CO₂ uptake of the polar oceans Rysgaard et al. 2012

Sea ice

Direct air measurement of air-ice CO₂ fluxes, scaled using sea ice temperature derived the NEMO-LIM3 model

Air-ice fluxes: -0.029 Pg Simple box model approach Rysgaard et al. 2012

Air-ice fluxes: -0.019 to -0.052 Pg

Open ocean

Takahashi et al. 2009 climatology

Air-sea fluxes south of 50°S: -0.04 Pg yr-1

Meltponds

Geilfus et al. 2012

In spring sea ice shift from a transient source of CO_2 to a sink of CO_2 for the atmosphere

Why such fluxes ?

Sea ice appears to be depleted in DIC

Sea ice appears to have high TA:DIC

But why sea ice shows these properties ?

Brine concentration promotes oversaturation of pCO_2 . Brine rejection lead to expulsion of CO_2 , mainly below sea ice, as the surface quickly becomes impermeable. CO_2 rich brines tends to sink below the pycnocline, acting as efficient CO_2 sequestration mechanism

 $CaCO_3$ formation and trapping during sea ice growth, can promote the increase of pCO₂ and expulsion of CO₂. CaCO₃ dissolution in spring consumes CO₂

Primary production promotes the uptake of CO₂

Release of CO_2 to the atmosphere during ice growth ?

Sea ice

Direct air measurement of air-ice CO₂ fluxes, scaled using sea ice temperature derived the NEMO-LIM3 model

Air-ice fluxes: -0.029 Pg Simple box model approach Rysgaard et al. 2012

Air-ice fluxes: -0.019 to -0.052 Pg

Open ocean

Takahashi et al. 2009 climatology

Air-sea fluxes south of 50°S: -0.04 Pg yr-1

Artificial ice (growth) – Intreice 5 experiment

Artificial ice (growth) – Intreice 5 experiment

Geilfus et al. 2013

AWECS - Winter Weddell Sea 2013

snow

ice

CO₂ fluxes (mmol/m²/d)

1

0

McMurdo sound winter 2012

CO₂ release in June: 84 mgC m⁻²

Bubbles ?

Zhou et al. 2013

---- Ar solubility (T = 0° C, S = 34.5)

Why fall and winter release of CO_2 ?

- Sea ice can be permeable at the top even in winter thanks to higher bulk salinity
- Sea ice rejects impurities both at the bottom of the ice but also at the top (case of frost flowers)
- At that time sea ice is strongly oversaturated in CO₂ due to brines concentration
- Bubbles are forming. CO₂ is transferred upwards with bubbles.

• Eddy-covariance

Snow acts as a CO₂ transient reservoir

Intercomparison of chambers measurements

Moreau et al. in pep

Moreau et al. 2014 1D model for Argon + CO₂ + ikaite precipitation according to Papadimirtriou et al. 2013 & 2014 + primary production

D diffusion coefficient at the air-ice interface

Moreau et al. in pep

Sensitivity tests: if we increase the diffusion at the ice-air interface we are unable to reproduce the observations

If we consider that there is no methodological biais in eddycorrelation air-ice CO_2 fluxes measurement, the only suggestion to explain the large air-ice CO2 fluxes is direct connection between the atmosphere and the underlying layer through fractures at meso-scale. They exist, but they are poorly documented

However...

this is not supported by lab experiments at small scale from Loose et al. 2011 using deliberate tracers or at large scale using ²²²Rn/²²⁶Ra ratios (Rutger Van der Loef et al. 2014)

- Sea-icé exchanges CO₂ directly with the atmosphere. These exchanges are driven by sea ice particular processes
- In spring and summer sea ice acts as a transient source of CO₂ for the atmosphere, then shift to a sink. Uptake of atmospheric CO₂ by ice cover in spring and summer is significant compared to the fluxes over open waters of polar oceans
- However, this sink is counterbalanced by CO₂ release in fall and summer, not evaluated yet
- Micrometeorological measurements show fluxes one or two order of magnitude higher compared to chamber measurements. These fluxes are difficult to explain, unless there are some direct connections between underlying layer and the atmosphere through sea ice fractures at mesoscale

AWECS - Winter Weddell Sea 2013

Net CO2 fluxes without ikaite formation-0.033 PgC yr-1including ikaite formation-0.083 PgC yr-1To be compared to fluxes of polar open oceans-0.199 PgC yr-1

Sea ice accounts for 17 to 42 % of CO₂ uptake of the polar oceans Rysgaard et al. 2012