Iron limitation Patterns, IOD Impacts & Monsoon-Climate Connections in the Indian Ocean

Jerry Wiggert, Division of Marine Science - University of Southern Mississippi, USA

Acknowledgements: Mike Behrenfeld, Jim Christian, Birgit Gaye, Chris Measures, Nick Hardman-Mountford, Raleigh Hood, Chuck McClain, Raghu Murtugudde, Tim Rixen, Sharon Smith, Jerome Vialard, Anya Waite

jerry.wiggert@usm.edu

Outline

- Indian Ocean Forcing and Biological Response to Monsoon
- Iron Limitation Signatures in the Indian Ocean
- Impact of Indian Ocean Dipole on Patterns of Biogeochemical Variability
- Climate Signal in Summer Monsoon Intensity?
 - Long-term Trend or Decadal Variability?
 - Biogeochemical Implications?
- Broader Biogeochemical Implications of these Biophysical Processes?

Indian Ocean Forcing & Biological Response

Monsoonal Forcing w/ Ekman Pumping (NCEP Winds)

Major Ocean Currents in Indian Ocean

Winter Monsoon

Summer Monsoon

 Major currents of the Northern Indian Ocean reverse semiannually, due to monsoonal wind forcing

Climatological Surface Chl

Iron Limitation in the Indian Ocean

Global Desert Dust Deposition Patterns (g m⁻² yr⁻¹)

Arabian Sea JGOFS Planning Report - "Arabian Sea is Mother Nature's Iron Experiment"

Mahowald et al., (2005), Global Biogeochem. Cycles, 19(4), doi:10.1029/2004GB002402.

Bio-availability of Dissolved Iron

- Iron limitation develops
 w/ upwelling of higher
 N:Fe waters and/or lack
 of nearby terrigenous
 sources
- Western Arabian Sea
 exhibits pronounced
 seasonal variation
- Bay of Bengal is iron
 replete except for Sri
 Lanka Dome during
 SWM
- Southern Tropics
 primarily iron limited
 - Western Equatorial
 Band always iron limited

MODIS-Based Phytoplankton Fluorescence (φ_{SAT}) & Ocean GCM Iron Limitation Distributions (JUN-AUG)

MODIS-Based Phytoplankton Fluorescence (φ_{SAT}) & Ocean GCM Iron Limitation Distributions

Behrenfeld et al., (2009), *Biogeosci.*, 6, 779-794.

OCB Summer Workshop: 25 - 28 July 2016

Nutrient co-Limitation (Diatoms) from PISCES Model

SW Monsoon

NE Monsoon

Koné et al., (2009), AGU Monograph 185.

Model Guidance on Arabian Sea Iron Limitation

• Wiggert et al. 2006

- 2 Photo (Large, Small)
- Tracked Nutrients / Micro-nutrients
 - ► NO3, NH4, Fe
- Western Arabian Sea exhibits Fe limitation, particularly during summer monsoon upwelling off Oman; Iron replete during SIM
- Moore et al., 2006
 - 2 Phytoplankton (Large, Small), 1 Diazotroph
 - Tracked Nutrients / Micro-nutrients
 - ▶ NO3, NH4, Fe, P, Si
 - Western Arabian Sea primarily N-limited, also some light, P (DIAZ) and Si limitation
- Kone et al., 2009
 - 2 Phytoplankton (Large, Small)
 - Tracked Nutrients / Micro-nutrients
 - ▶ NO3, NH4, Fe, P, Si
 - Western Arabian Sea shows a mix of Si, N and Fe limitation. Omani upwelling Si N co-limited; Somalia (Great Whirl) Si Fe co-limited

Observation Guidance on Arabian Sea Iron Limitation

N:Fe > 15,000 → Prone to Fe Limitation (Measures and Vink, (1999), DSR-II, 46(8-9), 1597-1622.) TN050 is late SWM Cruise

Observation Guidance on Arabian Sea Iron Limitation

- Curves 1-4 are nutrient draw-down experiment results from Bruland et al., 2001 for coastal waters in California upwelling system
 - Cases 1 3 represent eventual Fe limitation
- Sta 16 (near S1) and Sta 23 (near S9) data points from Arabian Sea suggest similar tendency toward Fe limitation

Observation Guidance on Arabian Sea Iron Limitation

25°_ N		Station	Date	Lat(N)	Lon(E)	[Fe] (pmol L ⁻¹)	ILI
23°-		8	29 Aug 2007	15.00	64.00	165	4.0
		10	3 Sep 2007	17.83	61.21	377	1.3
21-	UMAN / S	12	5 Sep 2007	16.21	59.68	440	3.7
		12 mol L^{-1}	5 Sep 2007	15.88	59.47	238	2.4
100-	(/•9 \	13	6 Sep 2007	15.00	58.65	205	4.3
19	C (2)	14	6 Sep 2007	14.29	57.54	242	1.4
	Contraction	15	7 Sep 2007	14.26	58.67	60	2.8
17-	11	16	8 Sep 2007	14.74	59.76	179	3.2
	18 20 21 22 21	17	9 Sep 2007	15.75	60.23	280	6.0
16°-	18 7 6 5 4 3	18	10 Sep 2007	16.75	60.50	229	0.9
		19	10 Sep 2007	16.43	61.25	213	1.5
13"_		20	10 Sep 2007	16.00	62.00	288	0.4
	24 24	22	11 Sep 2007	15.20	63.50	522	1.5
110	0.5	23/8R	12 Sep 2007	15.00	64.00	192	2.5
N		24	13 Sep 2007	13.13	62.60	150	1.1
5	2°E 54° 58° 58° 60° 62° 64° 66° 68° 70'	Data marked wi	th * were within a low	temperature filam	ent.		

- Iron limitation index (ILI) = 1.0 indicates no difference realized in iron amended experiments. As ILI exceeds 1.0, progressively greater degree of Fe limitation is indicated (Firme et al., 2003)
- Locations with ILI \leq 1.3 are highlighted
- Of 15 stations reported in table, 4 have $ILI \le 1.3$
- Cruise time frame is late SW Monsoon

Moffett et al., (2015), Limnol. Oceanogr., 60(5), 10.1002/Ino.10132, 1671-1688.

Iron Limitation Summary

- Models disagree on whether iron limitation plays a role in nature of primary production in the Arabian Sea
 - Mechanism that operates in the Wiggert et al. model is N:Fe ratio in upwelled coastal waters that is > 15,000 (i.e., prone to Fe limitation)
 - Models that include broader set of nutrients suggest complex co-limitation patterns among N, Fe, Si, P
- Observational evidence is growing that during the summertime, waters upwelled in the western Arabian Sea and within offshore propagating filaments are inherently prone to Fe limitation
- This despite:
 - Heavy dust deposition loadings
 - Benthic remineralization in near-coast waters
 - Open ocean OMZ, with elevated DFe conditions

Iron Limitation Summary

- Models disagree on whether iron limitation plays a role in nature of primary production in the Western Indian Ocean and Southern Tropical Indian Ocean (STIO)
 - Wiggert model indicates year-round iron limited conditions
 - Behrenfeld MODIS (FLH) based φ_{SAT} results indicate nutrient stress over a spatial domain during JUN - AUG time frame that is remarkably consistent with Wiggert model
 - Moore model does not indicate a nutrient limitation condition
 - Koné model (SWM Period) indicates Fe limitation off African coast; Fe N co-limitation across the STIO
 - Koné model (NEM Period) indicates Fe limitation off African coast; No limitation across the STIO

Indian Ocean Dipole (IOD) Impacts on Basinwide Biogeochemical Processes

Indian Ocean Dipole (IOD)

- Anomalous coastal winds drive upwelling in the east and reduces upwelling in the west (climatological: E, F; IOD: G, H)
- Anomalous convection over eastern Africa -> Anomalous equatorial easterlies & reduced/ absent fall Wyrtki Jet
- Anomalously deepened thermocline along 5° S in the west

Regional Definitions and DMI Definition

Indian Ocean Bathymetry (NGDC)

DMI & NINO 3.4 during SeaWiFS Era

- White lines depict regional boundaries for Arabian Sea, Bay of Bengal, W/E Equatorial Band, W/E STIO, W/E SCTR
- Opaque regions demark areas used to calculate DMI
- In general, + IOD correlates with El Niño
- During SeaWiFS era, two + IODs occur (97/98, 06/07)
- Over the course of this time series, frequency of notable IOD events indicated in historical record (~2/decade) bears out over 10+ years shown here

Chlorophyll Response to IOD in Eastern IO

IOD

Dec (NE Monsoon)

Sea Level & Chlorophyll Anomaly

Wiggert et al., (2009), AGU Monograph 185.

OCB Summer Workshop: 25 - 28 July 2016

Monthly Biological & Carbon Flux Anomaly

- Broadly consistent but less prominent CLa signatures during 06/07 event (eEQ, AS, sBB)
- CLa prominent into Jan '98 but largely dissipated in Jan '06

- NPPa calculated from CBPM-based NPP distributions (Behrenfeld et al., 2005)
- Generally, +/- NPPa coincides w/ +/- CLa

IOD Comparison Highlights Mechanisms Equatorial IO

- The 97/98 biological response is pronounced +CLa and +NPPa; These result from persistent, anomalous upwelling winds offshore of Indonesia and weak or absent Wyrtki Jet impingement in Fall '97, both of which promote nutrient enrichment of surface waters
- Clear difference in magnitude & spatial extent of CLa off Java/Sumatra; By Jan '06 +CLa off Java remains; But CLa off Sumatra!
- Result of weakening easterlies in Dec '06 and equatorial westerlies that manifest in Jan '07

Wiggert et al., (2009), AGU Monograph 185.

IOD Comparison Highlights Mechanisms SE Bay of Bengal

Prominent +CLa in SE Bay of Bengal in 1997; also appears in 2006 (though weaker)
 Subsurface - Temperature Anomaly in ARGO data suggest pool of elevated nitrate below 50 m in Dec 2006

Associated with -SLa feature along 6 °N, which exhibits upwelling RW nature
Similar conditions existed in Dec 1997; difference appears to be elevated wind mixing (anomalous easterlies) during earlier IOD, which overcomes near surface density structure (i.e., overlying freshwater) that inhibits nutrient injection

Seasonal IOD Impact on Areal and Surface Chl

Areal Chlorophyll (IChl)

Surface Chlorophyll (SChl)

- Chlorophyll from 40-year interannually forced biophysical model
 - Surface forcing from ERA40 reanalysis
- Regressions computed for the period 1961–2001
- SON: Strongest regression in SChI
 - Positive in Eastern EqIO
 - Negative off Equator (N & S)
- DJF:
 - Positive in Southern BoB (SChl & IChl)
 - Negative in SE Arabian Sea & SCTR (IChl)

Basinwide Impact of IOD on Annual NPP (TgC)

Production (TgC) by Region (SEP - APR)										
	Basin	AS	ВоВ	wEQ	eEQ	wSTIO	eSTIO	WSCTR	eSCTR	
CLIM	4420	909	485	336	167	1004	953	146	131	
97/98 IOD	4460	831	556	267	247	927	1101	115	184	
06/07 IOD	4656	1041	544	328	182	992	1031	134	153	

% Change by Region

	Basin	AS	ВоВ	wEQ	eEQ	wSTIO	eSTIO	WSCTR	eSCTR
97/98 IOD	1	-9	15	-20	48	-8	15	-21	40
06/07 IOD	5	15	12	-2	9	-1	8	-8	17

• Basinwide impact on NPP by IOD is increase of 1% (97/98) and 5% (06/07) (i.e., essentially zero-sum)

• Significant +/- effects are realized regionally; thus a significant remapping of NPP (& export & C-flux) is indicated

• Most prominent impact in equatorial band during 97/98 IOD (48% increase eEQ, 20% decrease wEQ)

• AS shows -9% (97/98) but +15% (06/07); Sole region to show inconsistent impact!

• For both IOD wSCTR shows 8-21% decrease while eSCTR shows 17-40% increase (however NPP magnitude is low)

This underscores clear need for better understanding of IOD-modified export flux, and therefore knowledge of IOD-driven phytoplankton speciation

IOD Impacts Summary

- Redistribution of NPP
 - Eastern Equatorial IO (+48%)
 - Western Equatorial IO (-20%)
 - Southern Bay of Bengal (+15%)
- Basinwide NPP only increased by 1-5%, but there is a clear remapping of NPP distribution
- Re-distribution of NPP related to both the anomalous atmospheric forcing (local) and atypical Wyrtiki jet behavior and Rossby wave field (remote)
- Model-based IOD response apparent in Areal ChI (IChI) in SE Arabian Sea, SCTR
 - Timing indicative of Rossby Wave association

Climate Signal in Monsoon Intensity?

Monsoon Bloom Implications?

Linkage to Deoxygenation?

Extent of Denitrification Maximum in AS

Secondary Nitrite Maximum (SNM) Naqvi and Shailaya 1996: $NO_2 > 0.5 \mu M$ $NO_2 > 2 \mu M$ Rixen et al. 2014: $NO_2 > 2 \mu M$

SNM area increased by 63% since JGOFS time frame

SWM Mean Wind Speed Black/Red Circles: AS JGOFS (1995) White Circles: R/V Meteor (2007)

Deoxygenation in the N. Indian Ocean (1960 \Rightarrow 2010)

Changes in Dissolved Oxygen (DO) at 300 dbar (µmol kg⁻¹ yr⁻¹) for the period 1960 - 2010

RED - DO increase **BLUE** - DO decrease WHITE - DO changes not Statistically Significant

Snow Cover Impact on Arabian Sea Production

- Time series of CHL (OCTS, SeaWiFS) and zonal wind stress are extracted from region off NE Somali Coast (47-55 °E; 5-10 °N)
- European Snow Cover (ESC) Anomaly
 - Solid line (-) is 14-month moving average
- Relationship Identified for SWM:
 - ↓ Eurasian Snow Cover (ESC);
 ↑ T_X; ↓ SST; ↑CHL

Reported Causal Link:

Global Warming → Reduced Snow/Ice Cover → Stronger Summer Monsoon & Higher CHL (proxy for Phytoplankton Biomass & Primary Production)

Data Sets

- Chlorophyll
 - Platform: SeaWiFS (1998 2002), MODIS Aqua
 - Arabian Sea (AS), Western AS (WAS), Central AS (CAS), Eastern AS (EAS), Northern AS (NAS)
- Winds
 - CCMP: Level 4 Product; Monthly; Extends through 2011 (Atlas et al. 2010)
 - Wind Speed
 - Upwelling Index (57–58 °E. 17–18 °N; (Ras ash Sharbatat)
 - Rotated w.r.t. Arabian Peninsula Land Boundary
- Sediment Trap:
 - WAST: (60.5 E, 16.3 N)
 - CAST: (64.8 E, 14.5 N)
 - EAST: (68.75 E, 15.5 N)
- Snow Cover
 - Platform: MODIS Terra, MODIS Aqua
 - Snow Cover Fraction (SCF)
 - 70–110 °E. 25–45 °N (Tibetan Plateau)
 - NCDC: Eurasian Snow Cover (ESC) Anomaly
 - https://www.ncdc.noaa.gov/snow-and-ice/

Regional Partitioning

- Regional subsets for extraction of remote sensing chlorophyll *a* time series (Black Boxes)
 - Arabian Sea, Western AS, Central AS, Eastern AS, Northern AS
- Sediment Trap Locations
 - WAST, CAST, EAST (+)
- Regional subset for extraction of CCMP level 4 wind product
 - Area off Ras ash Sharbatat
 (
- Image backdrop is MODIS Aqua 4 km chlorophyll a climatology for February

Monthly Chlorophyll a Time Series

No apparent trend

Upwelling Index off Ras ash Sharbatat

Arabian Sea Winds: Blended Satellite Winds (CCMP, 1/4°) – Monthly

- Trend in wind speed and upwelling index (UI) through 2001 SWM is consistent with the wind stress trend reported by Goes et al.
- Longer term: Clear persistent trend in SWM winds is not apparent

SWM Chlorophyll Trend - Western AS

JUL **SEP** Surface Chlorophyll Trend: Surface Chlorophyll Trend: Slope: 0.34229 Slope: -0.051369 8 Slope: 0.37555 Slope: 0.16539 8 Intercept: -682.17 Intercept: 105.64 Intercept: -749.26 Intercept: -328.66 r: 0.47015 r: -0.15726 r: 0.80913 r: 0.58457 7 7 6 6 Chlorophyll (mg m⁻³) Chlorophyll (mg m⁻³) 2 2 0 0 1998 2000 2002 2004 2006 2008 2010 2012 2014 1998 2000 2006 2002 2004 2008 2010 2012 2014 SeaWiFS (1998-2002), MODIS-Aqua (2003-2014) SeaWiFS (1998-2002), MODIS-Aqua (2003-2014)

- •7-year trend (1998 2004) in Western AS
 - In both JUL and SEP, chlorophyll show a positive trend.
 - For SEP, trend is statistically significant
- •17-year trend (1998 2014) in Western AS
 - Trend remains positive, though less statistically significant, during SEP
 - Trend is negative for JUL and is not statistically significant

Snow Cover Fraction (SCF) - MODIS

- European Snow Cover Anomaly (JUN)
 - Decreasing through 2002, but positive long-term anomaly
 - Appropriate spatial extent for SW Monsoon impact?

Snow Cover Fraction
 Exhibits interannual variation but no IA trend

Trend in CLa vs. SCF? - Western AS

Western AS

- Trend in Chlorophyll Anomaly (JUN) vs. SCF (FEB)?
 - Western Arabian Sea Region:
 - Outside of several years, a trend consistent w/ Warming
 - → Increased Biomass is indicated

Snow Cover Fraction
 45% Reduction for FEB 2009 vs. FEB 2008

CHL - Particle Flux Link: Western AS Track All-India Rainfall (AIR) Index?

OCB Summer Workshop: 25 - 28 July 2016

Deviation from Monsoon Rainfall [%]

10

Climate - SWM Bloom Linkage Summary

- Are long term trends noted in early SeaWiFS era continuing?
 - NO: 17-yr ocean color record indicates decadal variability is playing a role
- Are causal links suggested in previous studies indicated?
 - \downarrow Snow Cover \rightarrow \uparrow Chlorophyll ?
 - YES: Chlrorophyll a during SW monsoon onset time frame tracks w/ SCF for February
 - \uparrow Monsoon Strength \rightarrow \uparrow Production ?
 - YES: Sediment trap particle fluxes correlate with All-India Monsoon Rainfall

Climate Linkages to Basin Deoxygenation?

Iron Limitation in Arabian Sea

- Transition to HNLC regime during latter SW Monsoon in Arabian Sea has been postulated (Naqvi et al., 2010)
- Dustier conditions (higher deposition loads) under future climate conditions \rightarrow Relief of HNLC tendency?
- Connectivity of Arabian Sea OMZ to Iron Availability / Cycling and Maintenance / Evolution of OMZ

Frequency of IOD Manifestation

- Under climate change can expect more frequent IOD w/ associated high export flux condition occurring in Eastern IO
- Further expansion of low oxygen regions in Eastern IO

SW Monsoon Intensification

- Stronger upwelling \rightarrow increased production & export flux
- Increased delivery of organic matter offshore to OMZ region

Thank You