Air-sea gas transfer in the sea ice zone
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We’re looking for the drains and backups of ocean

carbon plumbing

Sigman et al., (2010)
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An empirical estimate of the Southern Ocean air-sea CO, flux

Ben L McNeil,' Nicolas Metzl,? Robert M. Key,” Richard J. Matear,*
and Antoine Corbiere®

MCNEIL ET AL.: SOUTHERN OCEAN AIR-SEA CO, FLUX
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Subduction and Shelf-Basin Interactions in the Arctic
Ocean

Steele et al., (1995)
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Polynyas, deep convection and CO, ventilation

Anderson et. al., 2009
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Natural CO, ventilation in the S.O.
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Polynyas, deep convection and CO, ventilation
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Seasonal forcing in a DIC transport model

Loose and Schlosser (2011)
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Annual FCO, through ice zone

Loose and Schlosser (2011)
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Springtime fluxes

Loose and Schlosser (2011)
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Timing of ice breakup and spring bloom

-45 days: peak Fq, is reduced

by 27%
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Here’s the punchline..

10 . J .
®  GAPS data (turbulence from shear) ]
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There are other first-order processes (in addition to wind)
driving gas exchange in the ice zone
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Contents

1. Differences between gas exchanges in the open ocean and the sea ice
zone.

— Turbulence and gas transfer from shear in the Ice-Ocean Boundary Layer.

— Turbulence and gas transfer from buoyant convection in the Ice-Ocean
Boundary Layer.

2. Results from GAPS laboratory experiment.
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Gas exchange over open water
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Gas transport pathways in the ice pack

We don't know.. @sive qu@
Air-sea flux, F(k) /

k = gas transfer velocity (L/t)

D = gas diffusivity (L%/t)

- Yt o o — — ——————— - - -

Circumpolar Deep Water (CDW)
Temp ~ 1.5°C
pCO2 ~ 650 natm
o3He ~ 8 %o

modified from Smethie & Jacobs, 2005 il
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How to model k in the ice pack?

3. Short period gravity waves
and interactions with ice floes

1. Shear in
the ice-ocean
boundary layer

2. Buoyant convection/stratification

e Shear in the ice-ocean boundary layer (IOBL) (McPhee, 1992; McPhee, 2008).
* Buoyant convection/stratification (Martinson, 1990; Morison et al., 1992)

e Surface roughening by short-period wind waves (Frew et al., 2004) and their
interactions with ice floes (Squire et al., 1995);
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How to model k in the ice pack?

F=k,AC k=(1-Dk; +(Dk
k.= (DK




pack?
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How to model k in the ice pack?

0’)14 _ Buoyant
_ ! convection/
l/t* + b stratification
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Ice drag on the Ice-ocean boundary layer

 —
T

skin-iw

T = (1 _ f) (Tskin—iw + Tform) + (f)(Tskin—aw)(l — W)

Steele et al., (1995)
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Ice melt increases ice-water relative velocity

melt rate (cm/day)
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Water-ice relative velocities (U..,— U

Geiger and Drinkwater, JGR

(2005)

* Wind, ocean tides, inertial
oscillations and other
motions affect sea ice
divergence.

e Seaice divergence affects
air sea fluxes, new ice
production and ™
thermohaline structure of
upper ocean.
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Buoyant convection

* J,, = Surface buoyancy flux (W/kg).

* (f) and (1-f) weight the open water and ice covered flux terms,

respectively.
Heat flux Precipitation
Jno = = e Ui +JE 9BE — PSo(6)
flux to ice

Evaporation
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GAPS Experiment at USACE CRREL
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GAPS: (Gas Transfer through Polar Sea ice).

https://www.youtube.com/watch?v=yrXycJLWGpU
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GAPS: (Gas Transfer through Polar Sea ice).
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Water-ice relative velocities (U, . —
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Steady state velocity field in experiment tank

Channel Velocity = 0.16 m/s
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Comparison of velocity: model vs. measure
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Shear-driven turbulence leads to k

‘ 21% Ice cover
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No relationship between k and ice cover
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Buoyant convection
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Convective turbulence model
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Buoyancy losses and convection

lce cover=21%
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Buoyancy losses and convection

6 21% ice cover 0% ice cover

Model of convection
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All processes in the turbulence model

Reproduced from Zappa et al., (2007)
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Returning to gas exchange over open water
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Summary

1. Convection and Boundary-layer shear lead to gas exchange rates that
are similar magnitude k as wind does (below 10 m/s).

2. The turbulence from (1) is additive with wind in its effect on k.

3. We need a way to measure the wind wave spectrum in SIZ and
correlate to gas exchange.

4. We need more direct measurements of gas transfer velocity in the sea
ice zone that correlate the magnitude with the processes.

5. Matlab code available at: http://looselab.gso.uri.edu/?p=183
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