

Southern Ocean Gas Exchange Experiment

David T. Ho

Department of Oceanography, University of Hawaii at Manoa

OCB Summer Workshop, Woods Hole, MA, July 22, 2009

Southern Ocean Gas Exchange Experiment

Scientific Goals Experiment Details Projects

- What are the gas transfer velocities at high winds?
- What is the effect of fetch on the gas transfer?
- How do other non-direct wind effects influence gas transfer?
- How do changing pCO₂ and DMS levels affect the air-sea CO₂ and DMS flux, respectively in the same locale?
- Are there better predictors of gas exchange in the SO than wind?
- What is the near surface horizontal and vertical variability in turbulence, pCO₂, and other relevant biochemical and physical parameters?
- How do biological processes influence pCO₂ and gas exchange?
- Do the different disparate estimates of fluxes agree, and if not why?
- With the results from Southern Ocean GasEx, can we reconcile the current discrepancy between model based CO₂ flux estimates and observation based estimates?

- NOAA SHIP RONALD H BROWN
- Atlantic sector of Southern Ocean
- Austral Fall (February 29 to April 12, 2008)
- 31 Scientist
- 16+ Projects funded by NOAA, NASA, NSF, and NERC

SO GasEx Study Site

The study location should capture the germane aspects of the Southern Ocean forcing and biogeochemistry while providing a suitable environment to perform the study.

The South Atlantic sector of Southern Ocean was chosen based on the following criteria...

- Delta pCO₂ of at least 40 μatm to ensure a large enough signal to noise for direct eddy-covariance measurements of CO₂.
- Relatively stable water mass (i.e., relatively weak currents and low mesoscale eddy variability) to allow ³He/SF₆ patch to be followed for up to 25 days.
- Mixing layer depth less than 50 to 70 m.
- Relatively high wind speeds, long fetch and large waves.
- Proximity to Punta Arenas and Montevideo to minimize transit time.

Categories of Projects

Table I: Categories of research projects on SO GasEx.			
	Research Projects	Method	
Т	Direct Flux Measurements (CO ₂ , ozone and DMS)	Air-sea CO ₂ (NDIR), Ozone and DMS (APIMS) flux systems	
2	Bulk Meteorology and Turbulent Fluxes (winds, momentum, water vapor, temp, IR, Solar radiation, etc.)	Sonic anemometer, thermometer, pyranometer, pyrgeometer, Mic- roSAS	
3	Integrated Gas Transfer Velocities with Deliberate Tracers (SF ₆ and ³ He)	Continuous and discrete SF ₆ systems (GCs) and He isotope mass spec	
4	Surface and Subsurface variability (CO ₂ , nutrients, calcite, DMS, chlorophyll)	Shipboard underway systems, NDIR CO ₂ systems, GC, EcoVSF, IC- POES, fluorometer, ACS, ISUS, SuperSoar/TOMASI	
5	Autonomous Platforms	MAPCO ₂ , SAMI, ASIS, surface drifters, SOLO floats	
6	Surface and near-surface ocean processes (wave spectra, white capping, currents)	Shipboard radar; microwave altimeter, video camera, ADCP	
7	Water column hydrography, carbon and related tracers (DIC, pCO ₂ , Talk, temp, sal, O ₂ , nutrients, DOC, CDOM, PIC, O ₂ /Ar/N ₂ , DMS, particles, TSM, Chl., POC)	SOMMA, NDIR, titration, CTD, Winkler, nutrient auto-analyzer, spectrophotometer, mass spec., GC, HPLC, fluorometer	
8	Primary production/new production	¹⁴ C and ¹⁵ N incubations, O ₂ /Ar, spectral absorption, radial photosynthetron	
9	Ocean Optics	PAR sensor, FRRF, IOP cage, HTSRB, MVSM	

Funded Projects

N GAS EXCHA

Gas Exchange	Quantifying air-sea gas exchange at high wind speeds using a dual gas tracer (³ He/SF ₆) technique during the Southern Ocean Gas Exchange Experiment, (David Ho, Peter Schlosser, Rik Wanninkhof)		
	Southern Ocean air-sea carbon dioxide exchange, (Wade McGillis, Chris Zappa, Jim Edson, Penny Vlahos)		
	Measurement and parameterization of air-sea DMS transfer over the Southern Ocean in GasEx-III, (Barry Huebert, Byron Blomquist)		
	Measurement and parameterization of air-sea gas transfer over the Southern Ocean in GasEx-III, (Chris Fairall, Detlev Helmig)		
	Quantifying the surface physical controls on CO ₂ transfer during the Southern Ocean Gas Exchange Experiment, (Will Drennan)		
	Gas tracers of productivity and bubble-mediated gas exchange during the SO GasEx Experiment (Roberta Hamme, Michael Bender, Steve Emerson)		
Biogeochemistry	CO2 and hydrographic measurements during the GasEx-III Experiment, (Dick Feely, Chris Sabine, Greg Johnson, Rik Wanninkhof, Molly Baringer)		
	Closing the mixed layer carbon budget during Southern Ocean GasEx, (Burke Hales, Pete Strutton, Dave Hebert, David Ullman)		
	Autonomous multi-parameter measurements from a drifting buoy during the SO GasEx Experiment, (Chris Sabine, Mike DeGrandpre, Wade McGillis, Chris Zappa)		
	Measurement of seawater DMS during SO GasEx (Steve Archer)		
	Measurement of nutrients during the Southern Ocean Gas Exchange Experiment (GasEx III), (Jia-Zhong Zhang)		
	On the distribution of colored dissolved organic matter in the Southern Ocean and the potential for photoproduction of CO ₂ and CO, (Carlos del Castillo, Rick Miller, Watson Gregg, Tom Haine, Francis Monaldo, Donald Thompson)		
Remote Sensing	Phytoplankton absorption and carbon dioxide drawdown in the Southern Ocean: A consortium of observations, (John Marra, Bob Vaillancourt, Ajit Subramaniam)		
	Optical properties in the Southern Ocean: In situ and satellite observations in support of Southern Ocean Carbon Program, (ZhongPing Lee, Alan Weidemann, Paul Martinolich, Wesley Goode)		
	Optical properties in the Southern Ocean: In situ measurements of phytoplankton absorption using the pFPT-TR instrument in support of the Southern Ocean Carbon Program, (Bruce Hargreaves)		
	Differentiating sources of backscattering in the Southern Ocean: Calcite, bubbles, and other optical constituents, (Heidi Dierssen, Barney Balch, Michael Twardowski, Penny Vlahos)		

Participants

- Steve Archer (Plymouth Marine Lab.), DMS
- Ludovic Bariteau (NOAA/ESRL), Micromet
- Byron Blomquist (Univ. of Hawaii), DMS Flux
- Chris Buonassissi (Univ. of Connecticut), HTSRB/LISST
- **Bob Castle** (NOAA/AOML), Discrete pCO₂
- Paul Covert (Univ. of Washington), TAIk
- **Juan de Abelleyra** (Servicio de Hidrografía Naval), Observer
- Carlos Del Castillo (Johns Hopkins Univ.), CDOM
- **David Drapeau** (Bigelow Lab), HTSRB/LISST
- Charlie Fisher (NOAA/AOML), Nutrients
- Scott Freeman (WET Labs), HTSRB/LISST
- **Burke Hales** (Oregon State Univ.), SuperSoar chem/optics
- **Roberta Hamme** (Univ. of Victoria), O₂/inert gases
- Bruce Hargreaves (Lehigh Univ.), pFPT-TR
- **Dave Hebert** (Univ. of Rhode Island), Turbulence/mixing

Atmospheric Flux Measurements

³He/ SF₆ Lagrangian Experiment

Biogeochemical Measurements

Optics/ Productivity

Buoys/Drifters

RB0501B CLIVAR A16S Leg 2 Water xCO₂

Courtesy ог г. такапазні/к. vvanninknoi/j. bouun

SeaWiFS chl [mg m⁻³] Austral Summer climatology

Courtesy of P. Strutton

Sub-mesoscale variability

MAR

Eddy Kinetic Energy (cm² s⁻²)

Courtesy of J. Sprintall

 $\begin{array}{rrrr} -5 & -3 & -2 & -1.8 \\ & -1.8 & -1.6 & -1.4 \\ & -1.2 & -1 & -0.9 \\ & -0.8 & -0.7 \\ & -0.6 & -0.5 \\ & -0.4 \\ & -0.3 \\ & -0.2 \\ & -0.1 \\ & 0 \\ & 0.2 \\ & 0.4 \\ & 0.4 \\$

Courtesy of Anand Gnanadesikan

Wind speeds

Courtesy of A. Jacobson

Wind speeds (m s⁻¹)

March

Courtesy of A. Jacobson

QSCAT Level 3 Average Wind Vectors (m s⁻¹)

Surface Velocities Calculated from Altimeter

Developed by Joaquin A. Trinanes

 O_2/Ar Productivity (mmol C / m² / d)

Courtesy of R. Hamme

Research Project Compone	Process an Method Componets
Biological Measurements	New Production
	Primary Poduction
Bulk Meteroplogyand Turbulet	Atmospheric Boundary LaryPehysicand
Fluxes	Meteorology
	IR Heat Flux
	Solar
	Temperature
	Turbulent Fluxesf Momentum
	Water Vpaor
Core CO ₂ and Hydrogaphic	Conductivityemperatur,eand Density(CTD)
Meæuremets	Equipment
	Dissolved Inorgantiarbon (DIC)
	μCO_2
	Spatial and an or a log print
DeliberætTraærs	SF ₆ and He
IR Remote Sensing	Active Infrared Tenniques
	MicrobreakingProcesses
	Ocean Skinfemperature
Nutrienst	Nutrienst
	02
Sea Surface Roughness	BuoybasedSmallScaleWaves
	ShipboardRadars
ShipboardCO ₂	Air-sea Gas Flux Sensits
DMS Fluxes	Ship Mat
Surface Oceanocesses	Aerosols
	Atmospheric CO ₂ Gradients
	Bubbles
	Currents
	Langmuir Cells
	Large waves
	Oceanic fatification
	Oceanic Surfacertulence
Surface (O Variability	CARbon Interfac@CoanAtmonhain
	Carbon Modeling
	Free Rising Traperature Profiler
	Submersible #anomousMoored Instrument
	(SAM)
	Surface CondO ₂ Variability

Table 3: Southern Ocean Air-Sea Gas Exchange Experiment

Long

QuikSCAT Wind Speeds

GASEXCH

QuikSCAT Winds : Mar 11, 2008 10:52z

Created by Barry Vanhoff, COAS, Oregon State University /home/div/disk1/bvanhoff/South_Georgia_hires/plot_SG.pro, psfiles_hires/45446_Tue_Mar_11_2008_hires.ps Fri Mar 21 2008

Gas transfer velocities from ³He/SF₆ Experiments (Open Ocean)

Wind speed, ship speed, and significant wave height

xCO2 from PMEL MAPCO2 Buoy

SO GasEx-related Presentations

OS22B (This Session)

• Parameterization of Gas Exchange from the Southern Ocean Gas Exchange Experiment (A Cifuentes, C J Zappa, L Bariteau, J B Edson, W R McGillis, C W Fairall)

- DMS transfer velocities above 10 m/s (B J Huebert, B W Blomquist, S Archer, M X Yang, C Fairall)
- Air-sea fluxes from drifting buoys during two recent open-ocean gas exchange experiments (W Drennan, E Sahlee, M DeGrandpre)

OS31B (Wednesday; MC Hall D)

• Satellite Estimation of Air-Sea Gas Transfer During GasEx-3 Using QuikSCAT and Jason-1 Microwave Radars (N M Frew, *D M Glover, M J Caruso)

• Direct measurements of momentum and latent heat transfer coefficients during the GasExIII 2008 field program in the Southern Ocean: Comparisons with the COARE3.0 bulk flux algorithm (C Fairall, L Bariteau, J Hare, S Pezoa, J Edson, A Cifuentes-Lorenzen, W McGillis, C Zappa)

• Influence of Waves, Whitecaps, and Turbulence on the Gas Transfer during the Southern Ocean Gas Exchange Experiment (C J Zappa, A Cifuentes-Lorenzen, J B Edson, W R McGillis, L Bariteau, C W Fairall)

• Optical Measurements of Bubble Injections in the Southern Ocean (K L Randolph, H M Dierssen, C Buonassissi, S Freeman, M S Twardowski)

- Measurements of the air-sea flux of ozone from the Ronald H. Brown (J Hare, L Bariteau, C Fairall, D Helmig, L Ganzeveld, K Lang, J Hueber)
- Tracking the SO-GasEx tracer patch with ADCP and high-resolution surface data (D Hebert, B Hales, P Strutton, D T Ho)
- Air-Sea Gas Exchange Measured with 3He/SF6 during SO GasEx (D T Ho, R Wanninkhof, P Schlosser, K F Sullivan)

•Water Column Carbon Trends During the SO Gas Exchange Experiment (C L Sabine, R A Feely, C Zappa, W McGillis, M DeGrandpre, G C Johnson, S M Jones, G Lebon)

• Low Net Community Production from Oxygen/Argon Mass Balance during the Southern Ocean Gas Exchange Experiment (R C Hamme, N Cassar)

• Primary Productivity and Carbon Export During the Southern Ocean Gas Exchange (SOGasEx) Lagrangian Tracer Experiments (V P Lance, P G Strutton, J F Marra)

• Depth-resolved water column spectral absorption of sunlight by phytoplankon during the Southern Ocean Gas Exchange (SOGasEx) Lagrangian tracer experiments (B R Hargreaves)

• Particle Populations in the Southern Ocean During the Southern Ocean Gas Exchange Experiment (C J Buonassissi, H Dierssen)

Measurements of the air-sea flux of ozone from the Ronald H. Brown (J Hare, L Bariteau, C Fairall, D Helmig, L Ganzeveld, K Lang, J Hueber)

- Parameterization of oceanic turbulence dependency (Fairall et al., 2007).
- Ozone variable used in model are : solubility for ozone in ocean of 0.1, reactivity of 10³ s⁻¹ and Schmidt number of 500 for ozone in water.

(D T Ho, R Wanninkhof, P Schlosser, K F Sullivan)

Water Column Carbon Trends During the SO Gas Exchange Experiment (C L Sabine, R A Feely, C Zappa, W McGillis, M DeGrandpre, G C Johnson, S M Jones, G Lebon, R Wanninkhof, D Ho)

An autonomous drifter measurements n meters A 24-bottle CTD/rosette package

was used to make a suite of measurements every 12 hours during the two tracer patch studies

collected high resolution surface and subsurface physical and biogeochemical CO₂ of dry air at SST (p)

Trends in surface xCO₂ and pH during 2nd tracer patch as measured by the drifter

CTD/Rosette sampled showed a drop in mixed layer alkalinity during the 2nd tracer patch

Low Net Community Production from Oxygen/Argon Mass Balance during the Southern Ocean Gas Exchange Experiment (R C Hamme, N Cassar)

Net Community Production from O₂/Ar ratios

Primary Productivity and Carbon Export During the Southern Ocean Gas Exchange (SOGasEx) Lagrangian Tracer Experiments (V P Lance, P G Strutton, J F Marra)

- Most number of ³He/SF₆ samples ever taken in a gas exchange experiment.
- More hours of eddy covariance CO₂ and DMS measurements than any other previous experiments.
- Ancillary measurements of waves, turbulence, and bubbles.
- Detailed carbon system (DIC, pCO₂, TAlk), DMS, and productivity measurements.
- ✓ Results should allow us to:
- Elucidate mechanisms controlling air-sea gas exchange in the Southern Ocean;
- Examine factors controlling CO₂
 and DMS dynamics in the Lagrangian tracer patches.

To find out more...

http://so-gasex.org

