Proxy relationships for carbonate chemistry: applications in Washington State marine waters

Simone Alin

With thanks to Richard Feely, Andrea Fassbender, Adrienne Sutton, Jan Newton, Christopher Krembs, John Mickett, and other partners

And for support:

What do we want?

Biogeochemical metrics reflecting exposure of marine organisms to OA – pH or $\Omega_{aragonite}$ are often preferred

What do we have?

Ideally direct measurements of carbonate chemistry, but these measurements are still expensive and difficult to make well.

CalCOFI since 1949 (T, S, O₂)

Race Rocks (BC) since 1930s (T, S)

Considerations in developing proxies

- What data are available (and quality of data)?
- Application (e.g., spatial or temporal coverage)?
- Tradeoff between breadth of applicability and uncertainty of estimates

California Current System ecosystem types

Many ways to predict each parameter depending on available data...

Temperature, salinity, oxygen or nitrate concentration, density (e.g., σ_{θ}) from West Coast OA cruises

Attribution of corrosive bottom-water conditions in Puget Sound: incoming marine waters

Corrosive conditions in Hood Canal

Closing thoughts

- Proxy relationships can yield very robust estimates of inorganic carbon chemistry.
- However, must consider end goal and errors carefully in determining how best to get there.
- Opens the door to tracking OA evolution in longstanding time-series with biological measurements.

