Investigating why DMS production consistently decreases in acidified ocean experiments

Stephen Archer

Kerstin Suffrian, Kevin Posman, Patricia Matria, Peter Countway

Ulf Riebesell, Andrea Ludwig and KOSMOS group

Bigelow

Laboratory for

Helmholtz Centre for Ocean Research Kiel

Potential impacts of OA on air-sea trace gas exchange

Microbial DMS, DMSPand DMSO cycling

Carpenter et al. 2012. Chem. Soc. Rev.

Acidification in a bag: a 'community-level response'

- CO₂-saturated seawater additions
- pCO_2 gradient : 190 to 1300 µatm
- 33 days

Svalbard – EPOCA mesocosm experiment

Arctic experiment: [DMS] vs. [H⁺]

Responses of DMS by different communities

Summary of mesocosm studies of OA on DMS and DMSP

Location	pCO ₂ range (ppmv) (and temperature)	% DMS change from present	% DMSP change from present	Study
Norwegian coastal mesocosm	300 vs 750 (7 to 9°C)	~ 40 % lower	40 % lower (P< 0.05) ¹	Avgoustidi 2007
Norwegian coastal mesocosm	300 vs 750 vs 1050 (9 to 12 °C)	not different at P < 0.05 ¹	not significantly different at P < 0.05 ¹	Vogt et al. 2008
Norwegian coastal mesocosm	350 vs 750 (7 to 10 °C)	54% lower	24 % lower ³	Hopkins et al 2010
Norwegian coastal mesocosm	280 to 1400 (cool-temperate)	~50 % lower	reduced	Webb et al. 2012
Baltic coastal mesocosm	280 – 1400 (cool-temperate)	~10 % lower	?	Webb et al. 2012
Korean coastal mesocosm	400 vs 900 (14-11°C) and 900 ppm + 3 °C	80 % higher 60 % higher	increased DMSP:POC	Kim et al. 2010
Arctic coastal mesocsoms	190 to 750 ppmv (2 – 5 °C)	35 (±11) % lower ⁴ (P< 0.005)	30 (± 3) % higher ⁴ (P< 0.005)	Archer et al. 2013
Korean coastal mesocosm	200 to 800 (14-11°C)	50 % lower	50 % decrease	Park et al. 2013

Archer, et al. 2013. Biogeosciences

What might the atmospheric implication be?

Global warming amplified by reduced sulphur fluxes as a result of ocean acidification. Six et al. *Nature Climate Change 2013.*

2x atmospheric CO₂ - 3.71 W m⁻² 17% reduced global DMS emission – 0.40 W m-2

Acidification in the tropical Atlantic

Three phases in the experiment

The community DMS response

Suggests a 30 % decrease in [DMS] at 750 µatm

Temporal progression DMS, DMSPp and DMSPd

Higher DMS at ambient [pCO₂] in early and late phases

> Closer coupling with increased [H⁺]

Heterotrophic processes more reliant on DMSP and DMS at higher [H+]?

Phytoplankton component: ecophysiological response

Arctic Mesocosm: phytoplankton ecophysiological response

Bacterial component: catabolism of DMSP

Are bacteria influencing production of DMS?

Regulation of DMS production at the molecular level

Regulation of DMS production at the molecular level

Molecular response in Ruegeria pomeroyi

1

3

DMSP addition: dddP vs. dmdA exprression

- Mini clone library constructed
- Less variability among sequences than for DmdA
- Best matches in GenBank (75-79% similar)

Meta-transcriptomics: expression of S-cycling genes

With 16S sequencing to find out who is there and when

Next steps

- 1. Ecosystem modeling: individual mesocosms in Canaries
- 2. Incorporation of key processes into coupled ocean-atmosphere model
- 3. Mesocosm Expt. 8th to 29th September 2015
 - Low nutrient 'warm water' summer community
 - Temperature and pCO₂ treatments
 - ¹³C tracer approach to track production and fate of DMSP

Bigelow Seawater Facility