Satellite tools and approaches for OA research

William M. Balch
Bigelow Laboratory for Ocean Sciences
E. Boothbay, ME 04544

With help from:

J. Salisbury, D. Vandemark, B. Jönsson, S. Chakraborty, S. Lohrenz, B. Chapron, B. Hales, A. Mannino, J. Mathis, N. Reul, S. Signorini, R. Wanninkhof, K. Yates

Acknowledgements

- Co-authors: Salisbury et al., 2015.
 Oceanography Magazine. In press. "How can present and future satellite missions support scientific studies that address ocean acidification?"
- Technical support: M. White, D. Drapeau, B. Bowler, L. Lubelczyk (BLOS) plus N.Bates and R. Garley (BIOS)- Gulf of Maine North Atlantic Time Series (GNATS)
- Financial Support:

Overview

- Space/time variability of
 - environmental variables measured,
 - relevant processes
 - Problem coastal waters
- Satellite constellation for OA work
- In search of two proxies of the carbonate system to measure
- Example: Focus on one product: [PIC] from space.

Introduction

- Surface pCO_2 is increasing by ~2 μ atm yr⁻¹, (nearly same rate as for atmospheric pCO_2)(LeQuéré et al., Earth System Science Data Discussions 2014).
- Saturation state of aragonite (Ω_{ar}), also decreasing by ~0.01 yr⁻¹
- IS THERE ANY WAY USING SATELLITE TECHNOLOGY TO ESTIMATE OA-RELATED CHANGES?

Is he kidding?? Measuring OA from 850km in space?!?

OA-Related Processes

Major impacts of OA likely to occur in coastal regions

- Complexity in carbonate dynamics in coastal regions (Cai et al., 2010, JGR; Cross et al., 2013, Mar. Chem.).
 - Acidic inputs from rivers (Salisbury et al., 2008, Eos Trans. AGU),
 - Upwelling (Feely et al., 2008, Science),
 - Intense biological respiration fueled by productivity (Cai et al., 2010, JGR)
- Multiple stressors in coastal regions. Large changes in the carbonate system over short timescales combined with longer-term OA or other stressors (e.g., temperature).

Gulf of Maine GNATS

$$\Omega$$
 aragonite = $[Ca^{++}][CO_3^{-}]/Ksp_{arag}$

What satellite products can we use?

- Satellites do <u>not</u> directly measure chemistry;
- Satellites provide statistical proxies of carbonate, or as elements in quasi-mechanistic chemical reconstructions
- Need some support from in-water observations.
- Satellite-derived POC, Chlorophyll, or particulate inorganic carbon (PIC), yields information on production/remineralization balances, plus particle sinking or physical dispersion or convergence.

SST

Salinity

Visible Band High res

Scales of space and time for earth viewing satellites

Remote Sensing of environmental variables, standing stocks and processes relevant to OA:

- **SST** (Minnett and Barton, 2010, In RadiometricTemperature Measurements: II. Applications)
- POC (Stramski et al., 2008, Biogeosciences)
- **PIC** (Balch et. al, 2005, JGR)
- Photosynthetically Available Radiation (PAR) (Frouin et al., 2012, Rem. Sensing Environ.)
- Phytoplankton light absorption (QAA algorithm, Lee et al. 2005, JGR)
- Net primary productivity (NPP; Behrenfeld and Falkowski, 1997, L&O)
- Calcification (Balch et al, 2007, DSR-II)
- Net community production (autotrophic fixation of CO₂ minus community respiration (Westberry et al., 2012, GBC; Jönssön et al., 2011, Biogeosciences),
- Phytoplankton functional types (diatoms, coccolithophores, diazotrophs (Westberry et al., 2005, JGR)

NASA Orbiting Carbon Observatory-2

 Atmospheric CO₂: a new data set for investigations of air-to-sea pCO₂ disequilibrium

Regional Gulf of Maine proxies with DIC

Physical, biological, chemical proxies in the Gulf of Maine for $\Omega_{\rm aragonite}$

Saturation State and pCO₂

Satellite approaches for estimating pCO₂ and air-sea CO₂ flux

- In situ surveys and global pCO₂ monitoring: Surface Ocean CO₂ Atlas (SOCAT) database
- Air-sea flux estimates: created by combining pCO₂
 disequilibrium with satellite sea state data (often based on wind-speed) to estimate CO₂ gas-exchange coefficients
 (Wanninkhof, 2014, L&O Methods).
- Knowledge of pCO_2 and Talk allows estimation of Ω calcite and Ω aragonite saturation states, and global Ω maps
- Satellite estimates ultimately rely on SST, ocean color, wind, wave, roughness, and circulation data
- Modeled salinity and remotely sensed SST and wind data to estimate the variability of Ω within the greater Caribbean region (Gledhill et al., 2009, Oceanography)

State of the Art in Remote Sensing of Carbonate System Variability

- Remote Sensing of Total Alkalinity: arguably most viable in support of carbonate system and OA studies
 - T_{alk} weakly impacted by biological processes
 - strongly covariant with seawater salinity
 - now continuous access to surface salinity observations from space
- Nonlinear combination of salinity and SST further resolves remaining non-conservative variation in T_{alk}
- Satellite T_{alk} product resolution 50-150 km spatial resolution in salinity data; (e.g. ± 0.2 in satellite-derived salinity translates to ±10-15 uMol/kg in T_{alk})
- Sparse literature on using satellite data for T_{CO2} and pH retrievals
 - weaker covariance with salinity (than T_{Alk})
 - visible and thermal data not robustly correlated with pH or T_{CO2} over larger spatial scales.

Bottom line on deriving pCO₂...

- Diversity and complexity of ocean biogeochemical provinces, plus steadily increasing surface water CO₂ levels, suggest, no single pCO₂ algorithm will be applicable at the global scale.
- State-of-the-art for these satellite-based algorithms =± 15ppmv accuracy in regional pCO₂. However, in complex coastal regions with large magnitude variation, accuracy will likely be lower (Hales et al., 2012, Prog. Oceanogr.).

PIC Product: 2B/3B algorithm (Vis, IR, NIR)

PIC view from ships...

PIC shoals the euphotic zone

All CaCO₃ particles are not equal!

PIC Global Time Series (MODIS-Aqua) Mission record- Highest PIC during austral summer

What we've learned about PIC turnover in the sea from satellite PIC measurements?

Average global PIC =~5[+/-1] x 10¹¹ moles PIC (Balch et al., unpublished)

Standing Stock = $6 \times 10^{12} \text{ g PIC}$

- Global calcification = 1.6[+/-0.3] Pg PIC y⁻¹
 (Balch et al., 2007, DSRII); about magnitude of global C production from biomass burning
- $(6 \times 10^{12} \text{ g PIC})/(1.6 \times 10^{15} \text{ g PIC y}^{-1}) = 0.003 \text{ y} = ^{\sim}1.1d$ turnover
- What is happening to it? It sinks or dissolves
- No indication of a trend in global PIC (e.g. negative trend associated with OA)

How long to detect a change in OArelated variables using satellites

- pCO₂ the current rate of pCO₂ change over the globe is ~2 2.5 ppm per year Given overall +/-15 uatm error in estimating pCO₂ from space, it will take ~6-8 years to detect a significant change in pCO₂
- Change in Ω Monte Carlo analysis. (Note, SST and salinity impart error in both the solubility and the TA algorithm). 1000 Monte Carlo trials yields Ω error of 0.11 using above assumptions. With annual change in Ω of 0.01- 0.016 units (for rate of CO_2 increase of 2-2.5ppm), need about a decade

Take Home Messages

Satellite-derived OA proxies will be important!

- Satellite measurements: Sea surface temperature, color, salinity, wind, waves, currents. <u>DISADVANTAGE: Satellites mainly see the surface; ADVANTAGES: Synopticity, high n (for statistics)</u>
- These enable understanding of physical, chemical, and biological phenomena that drive regional OA dynamics
- Elucidate potential impacts of carbon cycle change on a broad range of ecosystems.

Take Home Messages (cont.)

- Visible and thermal satellite data not robustly correlated with pH or T_{CO2} over larger spatial scales.
- Total Alkalinity arguably most viable in support of carbonate system and OA studies. T_{alk} accuracy of ±10-15 uMol/kg
- Probably no single pCO₂ algorithm will be applicable at the global scale. State-of-the-art ~± 15ppmv accuracy in regional pCO₂. Tougher near coasts. Will need help from in-water data.

So hang onto your hats... satellite remote sensing of OA is coming!

Global PIC Time Series- MODIS Aqua

Thank you!

