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Scope of discussion 
•  Studies of OA growing exponentially 

–  Ecological and “systems” connections play out 
differently in different ecosystems 

–  Many ways to partition recent and ongoing work 

•  Fundamental advances in marine ecological 
theory have mostly occurred via shoreline studies 

–  Keystone and foundation species (Paine, Dayton) 

–  Intermediate disturbance and diversity (Connell) 

–  Stress gradient (Menge & Sutherland) 

–  Succession (Sousa), facilitation (Bertness & Calloway), etc. 

•  Also important insights from open-ocean studies  

–  Often tied more tightly to microbial, biogeochemical 
processes (subject for tomorrow) 

J. Sones 

Focus mostly on benthic shoreline systems 

Not an exhaustive overview 



OA influences ecology at multiple levels 

•  Individual ecology 

–  Organism interactions with the 
environment 

•  Population ecology 

–  Demographic rates 

–  Changes in abundance/distribution 

•  Community/ecosystem 

–  Species interactions 

–  Trophic relationships 

J. Sones 
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Scaffold for considering population responses 

•  Physiological studies have provided insights into impacts on 
demographic rates 

–  Increases or declines in reproduction, mortality 

•  But have been connected less well to population consequences 

–  Some formal population models starting to be developed 

Population dynamics at their simplest 

Nt+1 = Nt + B – D + I - E 



Biggest challenge for population models may be 
accounting for effects on immigration and emigration 

Munday et al. 2010 

•  Majority of marine species have complex life 
cycles 

•  Dispersal is usually accomplished via larval stage 

•  Starting to understand impacts on larvae in some 
groups 

–  Altered recruitment success 

–  Increased vulnerability to predation 

Albright et al. 2010 



Quantifying all demographic parameters requires 
completing the life cycle 

•  Susceptibility to OA can differ across stages 

–  Larval, juvenile, adult 

–  Different habitats 

–  Different response to stressors 

•  Complete studies are emerging; more required 



Further complexity: Multiple life stages can be connected 

•  Larval carryover effects 

–  Effects of larval exposure persist to influence 
later life stages 

–  E.g., west coast native oysters 

•  Larvae exhibit modest (order 10%) declines in 
growth under OA 

•  Effect gets magnified in juveniles.  Individuals 
exposed only as larvae show 40% reductions in 
growth after settlement (Hettinger et al. in review) 

–  Note that if conducted only larval and juvenile 
exposures independently, would have missed 
such effects 

Ostrea lurida veliger 
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Effects can persist long after exposure ends 

•  Oysters exposed to OA only as larvae still 
smaller, 4 months after settlement 

–  Half-way to reproductive age 

–  Size often influences fecundity 

–  Impacts on production rates of subsequent 
generation? 

Ostrea lurida juvenile 
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Population impacts – good progress, more to do 

•  We have a start at defining effects on demographic parameters 

–  Reproduction and survivorship  fitness 

–  Less known about implications for organism dispersal  population 
connectivity 

–  Links among life stages can be important 

•  Greater effort required to make explicit ties to population-level issues 

–  Lots of physiological experiments 

–  Infrequently considered within population framework 

Nt+1 = Nt + B – D + I – E 



OA influences ecology at multiple levels 

•  Individual ecology 

•  Population ecology 

•  Community/ecosystem 

J. Sones 

J. Sones 

E. Sanford 



Focal areas for assessing community responses to OA 

•  Species interactions 

–  Direct and indirect 

•  Consequences for critical players 

–  Foundation and keystone species 

•  Community-wide and ecosystem-level effects 

–  Natural experiments (CO2 seeps) 

–  Broad “bottom-up” impacts 

All operating under multiple scales of environmental variation 



Species interactions – sparse but emerging examples 

•  Less work on competitive 
relationships 

•  Some attention to 
facilitative interactions 
(OA amelioration by 
primary producers) 

Bibby et al. 2007 
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•  Direct effects of predation – 
Consumption of oysters by 
drilling snails  

•  Indirect effects – Inducible 
defenses via olfactory cues 



…and keystone species 

•  Corals 
Hoegh-Guldberg et al. 2007 

•  Seastars 

Impacts on foundation species 

J. Sones 

•  Seagrasses 
J. Sones 

•  Mussels 
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•  Oysters 
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Understanding ecological impacts can require moving 
beyond simple assays 

•  California mussels are major space 
occupiers; also provide food and refuge for 
many species 

•  Field/modeling data suggest vulnerability to 
low pH 

Wootton et al. 2008 

Mussels 

•  Knowledge of mechanisms can 
provide further insights 

–  Multiple possible origins for 
pattern 

–  What approach to use? 

J. Sones 
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Where are the declines in ecological function? 

•  Many organisms grow slower, die at faster rate, or reproduce less 

–  Fairly general responses 

–  Could contribute to declines in mussel cover 

•  Reduced calcification is also common in molluscs 

–  Shells often smaller and/or thinner 

–  Thinner shells could be weaker  functional costs 

•  But are they weaker?  (data gap in calcification work) 

–  Morphological plasticity could obscure outcome 

Important to test assumed consequences 



Loss of function – with ecological repercussions 

–  More susceptible to 
drilling attacks by 
carnivorous snails 

Gaylord et al. 2011 
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Also increases vulnerability to energetic and 
desiccation stresses 

•  Less tissue mass 

–  Fewer energy 
stores for 
metamorphosis 

•  Greater ratio of 
surface area to mass  

–  Dry out faster 
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Not all foundation or keystone species will be 
negatively impacted 

J. Sones 

•  Important to maintain recognition that even positive impacts 
on one species can still induce community change 

•  Seagrasses – there will be winners too 
(Palacios and Zimmerman 2007) 

•  Could reduced vulnerability of foundation 
species improve overall community 
resilience? 



Implicit motivation is to resolve weak links that might 
cause cascading community effects 

•  Demonstrated OA impacts on corals 
themselves – variety of studies 

•  Also are effects on crustose coralline 
algae 

–  Framework and cementing organisms 
for coral reefs 

–  Facilitate recruitment in other systems 

Kuffner et al. 2008 



Another thrust:  Whole-community responses using 
“natural experiments” 

•  Declines in calcifiers 

–  Corals, urchins, coralline algae 

•  Higher seagrass production 

•  Some important omissions 

–  E.g., larval inputs 
Hall-Spencer et al. 2008 

Ischia, Italy – geologic CO2 vents 



Yet another target area: Broad bottom-up responses 

•  Impacts on key players in 
biogeochemical cycling 

–  Cyanobacteria (Trichodesmium) 

–  Responsible for 25-50% of 
nitrogen fixation in global oceans 

–  Potential implications for “bottom 
up” processes 

•  Other food web examples 

–  Pteropods, food resources for 
many fishes 

Hutchins et al. 2009 

Orr et al. 2005 



Environmental variation is characteristic 

•  Key element missing in most lab experiments is temporal 
fluctuation 

–  Most studies heavily focused on IPCC projections 

–  Organisms do not experience global means 

–  Even if focus regionally, real world is not static 

Pelejaro et al. 2010 



Scales of variation 
•  Daily to decadal scales are relevant for ecology of populations and 

communities – raises issue of acclimation potential 

•  Often longer scales for evolution – adaptation becomes key question 

Pelejaro et al. 2010 



Variation differs across ecosystems 
•  Tropics 

–  More constant seasonally, slower chemical responses to anthropogenic CO2 

•  Poles 

–  Faster and more dramatic chemical changes 

Hill et al. unpubl. 

Bodega Head, 
California 
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•  Temperate upwelling 

–  Large fluctuations over days/weeks 

–  Response to synoptic winds – themselves 
shifting with climate change 

•  Estuaries 

–  Exceptional variation due to freshwater 
input 



Moving forward 

•  Work to understand population consequences 

–  Complete the life cycle, account for all demographic parameters 

•  Extend beyond single-species lab experiments 

–  Mesocosms (species interactions) 

–  Field outplants (natural variation) 

•  Begin to account for multiple factors 

–  Synergistic and nonlinear effects 

–  Connections between physical/chemical/biological processes 

–  Recognize environmental complexity 

•  Account for ecological-evolutionary connections 
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