

Moorea Coral Reef LTER

Context for, and advantages of, OA research at an LTER site

Moorea Coral Reef LTER – sampling design

MCR research themes

1. Resilience of contemporary reefs

From: http://oceantippingpoints.org

2. Coral reefs of the future

Physical measurements of pH

Biological changes on the reefs of Moorea Coral cover Coral genera

2005

Summary: Over the first decade, major changes driven by pulse disturbances (COT and cyclone)

Organism scale effects

Long-term change on the N shore

Winners in Moorea

Porites

Pocillopora

Losers in Moorea

Solid lines, P < 0.05, dashed P > 0.05

Variety of species contrasts differ in their response to OA, and show no tipping point against pCO₂

Comeau et al. (2013) L&O 58, 388-, (2014) L&O 59: 1081-

Organism scale effects – functional groups

ANCOVA, slopes: P = 0.042

Do coral reef calcifiers differ among functional groups in response to OA?

• fast vs slow

Summary: Functional groups differ, fast are more sensitive

Comeau et al. (2014) L&O 59, 1081-

than slow calcifiers

Community scale effects – flume experiments

Back reef

Community scale effects – back reef

Community matched to Moorea 2013

B

Summary: community calcification reduced 59% at high pCO2, with 50% of this due to sediment dissolution; corals and calcified algae reduced 29%

Community-scale effects – 17 m, outer reef

Comeau et al. (2015) GCB (in press)

Communities

Populations

Modeling approaches:

- Dynamic energy budgets (DEB)
- integral projection models (IPM)
- Metabolic theory of ecology (MTE)

Cells

Organisms

Integral projection models – *Pocillopora verrucosa* example

Size $1 = 2.6 \pm 0.1$ cm

Size III = 7.9 ± 0.1 cm

Size II = 5.6 ± 0.4 cm

Size IV = 12.0 ± 0.3 cm

Factorial experiment

(Trial 1, 2014; Trial 2, 2015)

Integral projection model (IPM)

Summary: *Preliminary work* reveals complex ways by which OA translates to population growth

Future OA plans in Moorea

1. In situ flume work to better match to conditions affecting reefs in the LTER

- 2. Extend duration of experiments to 12 months
- 3. Common gardens to explore within- and among- genotype capacity to respond to OA

Summary points

- 1. MCR-LTER supplies information infrastructure for contextualizing OA research and for providing added value to this research
- Long-term (decades+) aspect of LTER is critical to providing:

 (a) a means to evaluate effects of press disturbances (like OA)
 (b) test hypotheses emerging from OA research
 (c) framework for year+ OA experiments
- Intellectual, data, and technology infrastructure is well suited to one of the next major challenges: integrating effects across scales.

<u> Acknowledgements</u>

Population/community scale effects – ecological processes

Competitive encounters among corals

Montipora vs Porites

Moorea

Summary: Growth depressed by OA, but competitive encounters reduced negative effects

Evensen, Edmunds, Sakai. MEPS (in review)