FIELD AND LABORATORY STUDIES OF PTEROPOD ECOLOGY AND PHYSIOLOGY IN RELATION TO NATURAL VARIABILITY IN CARBONATE CHEMISTRY

Gareth Lawson

Woods Hole Oceanographic Institution

OA PI Meeting – June 9, 2015

The Pteam

WHOI Collaborators

Aleck Wang

Peter Wiebe

Andone Lavery

Ann Tarrant

Houshuo Jiang Veronique Le Roux

Former **Postdocs**

Amy Maas

Leo Blanco Bercial

Kakani Young

Technicians

Nancy Copley

Katherine Hoering

Alex Bergan WHOI-MIT

Sophie Chu WHOI-MIT

Ali Thabet Al-Azhar University

Undergrad **Students**

Shannon Crosby

Camille Pagniello DePauw University Dalhousie University

Thecosomatous Pteropods

- Aragonitic shell-forming planktonic gastropods
- Important to biogeochemistry and as prey item for many commercial fish (e.g., salmon)
- Lab and field studies have shown shell dissolution in response to under-saturation (Ω_A<1)

Cavolinia uncinata

Limacina helicina

Overall Approach

- Combine field studies with
 shipboard and lab experiments
- Capitalize on natural variability in carbonate chemistry (spatial and seasonal) as natural experiments
- Goals are to gain improved understanding of thecosomatous pteropod biology in order to understand potential response to OA

SHIPS!

LAB!

Ocean Acidification Pteropod Study (OAPS)

- Differences exist between and within the modern-day Atlantic and Pacific Oceans in the Aragonite Compensation Depth (ACD)
- Goal is to examine:
 - Carbonate chemistry
 - Natural distribution, behavior (including DVM), species diversity, shell condition
 - Physiology (metabolism and gene expression)
- Open-ocean cruises in August of 2011 (Atlantic) and 2012 (Pacific)

June 15, 2015

Sampling Methods

- CTD to characterize physical environment (to 1000-3000m)
- Niskin bottle sampling to measure pH, DIC, alkalinity, nutrients, salinity
- Depth-stratified net system and Video Plankton Recorder to sample directly the zooplankton (to 1000m)
- On-board CO₂ exposure experiments of animals sampled by Reeve net

Underway Sampling

- Measurements of surface sea water fCO₂, DIC, pH, and air pCO₂
- Multi-frequency and broadband echosounders to map the zooplankton and fish scattering
- Visual surveys for surfaceassociated predators (seabirds, marine mammals, large fish)

June 15, 2015

Pacific Carbonate Chemistry

400

600

800

1000

Depth [m]

- Decrease in pH since 2001, the last time CLIVAR/WOCE line P17N was occupied
- Shoaling of aragonite saturation state contours

 $\Delta\Omega_{aragonite}$ (2001 to 2012)

Natural Experiment

Diversity and Abundance

Acoustic Observations of Pteropod Swarms

8.1

8.05

8 4.7 at 25°C 4.62

11

- Tongue of low salinity waters off the Grand Banks
- Dense swarms of *Limacina retroversa* on average 630 m in extent, 7.9km apart, mean densities of ca. 3000 inds.m⁻³

Transect 2 (Stn 14 - Stn 20)

Vertical Distribution

12

June 15, 2015

Shell Condition

Alexander Bergan PhD Student

Scanning Electron Microscopy

13

- Used to measure "porosity" and thickness of leading edge
- Differences in the porosity of the adult shell of *Clio pyramdiata* between regions but not significant

Shell Condition

Micro CT

- X-ray micro computed tomography shows inner structure at fine resolution (<1µm)
- Developing methods for quantifying shell thickness and density

Physiology

15

Dr. Amy Maas

Short-term (3-18 hr) experimental exposure: High CO_2 (400 vs. 800 PPM) Low O_2 (21 vs. 10%)

Gene Expression

Oxygen Consumption

June 15, 2015

Physiology – Metabolism

- No effect of CO₂ alone on metabolism for any species in either basin
- O₂ (alone or in concert with high CO₂) only affected two Atlantic species

Physiology – Gene Expression

- *Clio pyramidata* transcriptome included homologs of genes with known biomineralization role in other molluscs
- High variability but some significant patterns of differential expression
- Down-regulated some genes associated with aerobic respiration in response to high CO₂
- Up-regulated some genes associated with biomineralization

Biogeography and Taxonomy

10

Dr. Amy Maas

Dr. Leo Blanco Bercial

Summary

CONCLUSIONS

- Inter-disciplinary sampling and approach
- Value in natural experiments
- Variability in diel vertical migratory behavior and physiological response to high CO₂/low O₂
- Check out our posters on Gulf of Maine pteropods (acclimation, effects on early life stages and fitness)

OUTSTANDING QUESTIONS

- Trans-generational effects, adaptive capacity
- Ecosystem/foodweb effects
- Biogeochemical implications

Acknowledgements

glawson@whoi.edu www.whoi.edu/people/glawson funwithkrill.blogspot.com

- External Funding: NSF Ocean Acidification Program
- Internal WHOI Funding:
 - The Grayce B. Kerr and Penzance Endowed Funds in Support of Assistant Scientists
 - Pickman Foundation
 - Coastal Ocean Institute

Gulf of Maine

- Seasonal variability in surface conditions
- Examining carbonate chemistry through the water column
- Implications to the cosomatous pteropods and possibility for acclimation
- Using *Limacina retroversa* as a lab rat for OA studies.

Limacina retroversa

The Gulf of Maine

Laboratory Exposure Experiments

Ambient 400 ppm

22

Medium 800 ppm

High

1200 ppm

to ambient (400), medium (800) and high CO₂ (1200 ppm)

Laboratory Studies

Early life stages & development

Culture Protocols

Sinking / Swimming

Respiration rates

Gene Expression

Shell condition

Broadband Acoustic Sampling

24

• Broadband acoustic system measured scattering spectra consistent with thecosomatous pteropods, euphausiids, and mesopelagic fishes

Biogeography and Taxonomy

Dr. Amy Maas

Dr. Leo Blanco Bercial

D. strangulata

D. atlantica

Diacavolinia spp.

60° 30°W 0 30°E 60°

90° 120° 150°E 180° 150°W 120°

90° 60°

Biogeography and Taxonomy

26

Atlantic Chemistry

- Decrease in pH since 2003, the last time CLIVAR/WOCE line A20 was occupied
- Aragonite saturation state contour of Ωa = 3.5 has shoaled by ca. 100m
- At northern end of survey lines, compensation depth ca. 2500m in Atlantic and 135m in Pacific

June 15, 2015

Underway Acoustic Observations

 Multi-frequency acoustics to characterize Deep Scattering Layer

Underway Observations

29

Underway Observations

Underway Chemistry Observations

• Flow-through systems for carbonate chemistry

Field Studies

Differences in rate due to CO2 exposure

Shell Condition

Transparency and Opacity

- A quantitative interpretation of the Limacina Dissolution Index (eg. Gerhardt *et al.* 2000)
- Images from a dissecting microscope at 2.5x magnification with transmitted and opaque lighting
- Cropping is used such that the operculum and any holes are removed from grayscale analysis (any single layer of shell)

Alexander Bergan PhD Student

Sinking

- Limacina retroversa reared in seawater bubbled with 400 ppm CO₂, 800 ppm CO₂, and 1200 ppm CO₂
- Video taken in mirrored tank at 500 frames per second, giving 3D path and velocity of the animals

June 15, 2015

Sinking

Before 2 weeks: p=0.091, One way ANOVA

After 2 weeks: p=0.02*, One way ANOVA

June 15, 2015

Swimming

Early Life Stages

8- cell

Late gastrula

Trochophore larva

1 week veliger larvae

Reproductive adult

Stage	Time
Spawning	0 h
2-cell	4 h
4-cell	6 h
8-cell	9 h
16-cell	11 h
Blastula	16 h
Gastrula	24 – 72 h
Hatching	3 days
Trochophore	3-6 days
Veliger	6-7 days
Juvenile	1-2 month
R e p r o d u c ti v e Adult	3 months
Life Span	6 months

Early Life Stages

Early Life Stages

Limacina retroversa transcriptome

OAPS – Pacific 2012

60

- Dominant scattering feature was a nonmigratory shallow layer
- Additional analyses and comparison to net samples are required

Art-Science Collaboration

