Boron constraints on Ocean Acidification During the PETM

D. Penman, B. Hönisch, R. Zeebe, T. Babila, E. Thomas, J.C. Zachos

Hönisch et al., 2012, Science

The Paleocene Eocene Thermal Maximum; A case study for assessing oceanic carbon system response to massive carbon release

- Global Warming (+5 to 6°C)
 multi-proxy (e.g., δ¹⁸O, Mg/Ca, Tex₈₆) constraints
- Fast Rate of Carbon Release
 - Estimated 4500 to 6800 PgC Based on CCD shoaling (i.e., deep sea saturation)
 - Carbon isotope Excursion
 - < 5 kyr, so roughly1 PgC/yr</p>
- Rate of C emission slower than rate of oceanic overturning
 - Does not mimic modern surface ocean ΔpH

Deep Sea Isotope & %CaCO₃ records

Massive Carbon Input

Carbon Isotope
 Excursion (CIE) of
 -3.0%

Global Warming

 Oxygen Isotope Excursion (5 to 6°C)

Ocean Acidification

 Calcite Dissolution Horizon - direct evidence of massive carbon release

Zachos et al., 2001; IPCC 2008

PETM Simulated pH change (LOSCAR)

3000 PgC (5 kyr) + 1500 PgC (50 kyr) ΔpHsurf = <-0.2

Uchikawa & Zeebe, 2010

Simulated \Delta Carbonate Saturation (GENIE)

- GENIE (Ridgwell & Schmidt, 2010)
- 6840 PgC input over 10 kyr ($\Delta pH = -0.3$)

Reconstructing PETM ΔpH : Speciation/Partitioning of B and $\delta^{11}B$ in seawater/calcite –sensitivity to pH

- With increasing pH, the δ^{11} B of B(OH)₄ approaches that of δ^{11} B_{sw}
- Assuming borate is primary form of B in the calcite lattice CaCO₃ + B(OH)₄⁻ → Ca(HBO₃) + HCO₃⁻ + H₂O
- with an estimate of pH and with constraints on another carbonate system parameter, can compute pCO2.

Planktonic Foram B/Ca Calibrations

Allen et al., 2011

Paleocene Planktonics

Mixed-layer Taxa:

- Morozovella velascoensis
 - Photosymbiont-bearing mixedlayer planktonic foraminifer (e.g., *O. universa*)
 - Cosmopolitan distribution
- Acarinina soldadoensis
 - Photosymbiont-bearing mixedlayer planktonic foraminifer (e.g., *O. universa*)
 - Cosmopolitan distribution

Thermocline Taxa:

- Subbotina spp.
 - lacked photosymbionts

Site 1209

- Mixed-layer forams
 -δ¹¹B (-1.2‰)
 - -B/Ca (-40%)-Mg/Ca (+5°C) $-\delta^{13}C (-3.5\%)$
- Thermocline forams -B/Ca (-20%) -Mg/Ca (+4°C)

(*Penman et al.*, 2014)

Sites 690/689: Atlantic, Southern Ocean 55 Ma reconstruction

Sites 689/690: Southern Ocean, Atlantic

- Mixed-layer forams $-\Delta B/Ca (-40\%)$ $-\Delta \delta^{13}C (-3.5\%)$
- Thermocline forams -B/Ca (-20%)

(Penman et al., in prep; Thomas et al., 2001; Kelly et al., 2005)

Bass River: N. Atlantic, NA Margin 55 Ma reconstruction

Shallow Marine/Coastal Ocean Acidification?

Bass River ODP Leg 174AX

Simulating the $\Delta B/Ca_{Mixed-layer}$

- LOSCAR
- 3000 + 1500 PgC
- modern planktic calibrations
- $\Delta B/Ca_{obs} > \Delta B/Ca_{4500}$

(Penman et al 2014)

PETM – Estimated and simulated ΔpH mixed-layer

(*Penman et al., 2014*)

PETM Acidification Summary

- Based on B Isotope data Surface Ocean ΔpH of -0.32
- 40-50% decline in B/Ca in mixed-layer foraminifera – relatively uniform including coastal ocean
- Both observations are consistent with >6000 PgC release over 5 kyr or longer
- Impacts on marine calcifiers?
 - major extinctions limited to deep sea benthic organisms, possibly corals
 - reductions in diversity of pelagic planktonic calcifiers

Testing the B/Ca proxy under "Paleocene" seawater conditions

Testing the B/Ca proxy under "Paleocene" seawater conditions

