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’ Seagrasses are
marine angiosperms

Leaves, roots & rhizomes
Adapted for submerged growth
More than 50 spp. worldwide

Distributed from polar to tropical
seas

e More than 600,000 km2 globally
* Highly productive

* Creates habitat and structure for
diverse array of marine organisms

 Significant biogeochemical agents
e Sediment redox

e Carbonate dissolution & pyrite
formation (= alkalinity)

e "Blue Carbon”
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Seagrasses and
Climate Change:

* High light
requirements (10 -
20% Sfc E)

* Vulnerable to
anthropogenic
disturbance

* Sensitive to high
summer
Temperatures
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Seagrass loss threatens provision of
major ecosystem services in shallow

coastal environments

e Habitat structure and sediment
stability
» Loss of "blue carbon” deposits

 Productivity shift from benthos to
plankton

* Shifts in sediment biogeochemistry

- Reduced flux of (CH,O), and O, to
sediments
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"So, what does climate change have in
store for seagrasses?

Climate warming will increase summer stress

* Chesapeake Bay eelgrass
« Moore & Jarvis. 2008. J. Coast. Res 55:135-247
e Mediterranean Posidonia
« Marba, N. and C. Duarte. 2010. Global Change Biology 16:2366-2375.

Heat stress events will become more frequent

» European eelgrass

- Franssen, S. and others 2012. Transcriptomic resilience to global warming in
the seagrass Zostera marina, a marine foundation species. Proc. Nat. Acad.
Sci. 108: 19276-19281.

- Winters, G., P. Nelle, B. Fricke, 6. Rauch, and T. Reusch. 2011. Effects of a
simulated heat wave on photophysiology and gene expression of high- and

low-latitude populations of Zostera marina. Mar. Ecol. Prog. Ser. 435:
83-95.
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And what algou’r Ocea‘n’
Acidification?

Clearly, there will be some losers

e Reduced carbonate saturation state hard on
calcareous organisms

But its more than just pH and Q

There will also be some winners

* Increased pCO, will reduce photosynthetic reliance
on HCO; dehydration/transport

* potential benefit to seagrasses

P —

Maybe we should call it Ocean Carbonation...



~— Seagrass photosynthesis depends
heavily on dissolved CO........
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McPherson, M., R. Zimmerman, and V. Hill. 2015. Environmental and physiological influences on productivity
and carbon isotope discrimination in eelgrass (Zostera marina L.). Limnol. Oceanogr. In Review.



~——Seagrass photosynthesis can be

driven by HCO+ dehydration but
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McPherson, M., R. Zimmerman, and V. Hill. 2015. Environmental and physiological influences on productivity
and carbon isotope discrimination in eelgrass (Zostera marina L.). Limnol. Oceanogr. In Review.

CCM’'s unable to saturate C demand of
RUBISCO from HCO,-



Model predictions of T & pH/CO, effects
on daily photosynthetic requirements
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Zimmerman, R., V. Hill, and C. Gallegos. 2015. Predicting
effects of ocean warming, acidification and water quality

on Chesapeake region eelgrass. Limnol. Oceanogr. In
Review.




Model predictions of T & pH/CO, effects
on daily photosynthetic requirements

CO, stimulates £
Increases daily AR
Reduces effect of
Temperature on

light requirements
to maintain positive
carbon balance
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Zimmerman, R., V. Hill, and C. Gallegos. 2015. Predicting
effects of ocean warming, acidification and water quality

on Chesapeake region eelgrass. Limnol. Oceanogr. In
Review.




PFr—— Testing

Virginia Aquarium Climate Change Facility

* Natural solar irradiance
 Can be screened to different intensities

* Multiple planting trays within each aquarium
o Within-tank replication
e Comparison among different populations



y Testing Model Predictions:
Virginia Aquarium Climate Change Facility
* 20 experimental

Gravity outflow to

aquaria Ol eeck
e Individually pH and ()
Temperature ¥ e
controlled I
* Single pass, : §| [Sonodvghes an
ConTinuous flow PAR ; Software control and
e Unfiltered water = ¢ e
from Owl's Creek T

e 2 h residence time

Conductivity|
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Donor population from South Bay, DelMarVa Peninsula,VA
Transplanted into Experimental Facility in May 2013




o pH
e Temperature
e Salinity

* PAR

* Monthly measures of shoot:
e Shoot number

Shoot size

Growth rate

Sugar content

Pigments

Tissue C, N, S
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seasonal and daily VGI"IGblllTy

Solar Radiation
e 5-fold annual variation

e Weather-scale variation (clouds)
imposed on annual cycle

e Amplitude of daily variation
greatest in summer

e Summer average H,,; = 8 h

e Winter average H,,; =4 h
Ambient Temperature

* Annual amplitude > 25° C

e Daily amplitude = 5° C

» exceeded 25° stress threshold:
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- 90din 2014
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Weather-scale variability in
Salinity

pH controllers provide good
experimental separation of CO,
availability.

Manipulated treatments
average within 0.1 pH unit of
the target

[CO,] and Q calculated from T,
pH using CO2SYS

Daily mean [CO,,,] (umol kg™'SW)
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' pH Variability in Owl’s Creek, VA
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— Despitethe-warm summ
= Shoot numbers increased with CO, availability

Shoot numbers (% of original)
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— Despi
/ Shoot size increased with CO, availability

Shoot Size (% of Original)

604 7.6
85 7.4
=
2
B )
ne =
S A
S 280 o 09
e
= |z
g
S 620 - = 6.6
O

1760 — 6.1

MJJ ASOND JF MAM J J A S
2013 2014



> — DespW

~ Absolute growth increased with CO, availability

Absolute Growth Rate (cm2 d'l)
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~ Flowering shoots increased with CO, availability

Flowering shoot Numbers
(% of Total)
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““After a long hot summer..

* More shoots
* Larger shoots
* More below ground biomass




me and C:N increased with [CO,]
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% pigmem‘ content decreased with
[CO2]

Photosynthetic Pigments Photoprotective Pigments
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CO, acclimation mimics photoacclimation



Photoacclimation regulated by

Chloroplast
Glu+Cys = y-EC * LERE B
HyOp sosdensnnnannnnnn Sensor ?
‘ T
@ MAPK cascade

State ’ \
transition

Plastid gene
expression

* Photorespiration

* CO, limitation of g
Rubisco o

rimb

£
components?y
,

* Reactive oxygen

species ke
o PSIT activity | : mQmm
* Redox state of PQ . -

e Electron transport Gytosol
and PS 1

Pfannschmidt, T. and others 2009. Potential regulation of gene
expression in photosynthetic cells by redox and energy state: approaches
toward better understanding. Annals of Botany 103: 599-607.

All of which are affected by [CO,]
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/LTr\g-Term experiments support model
calculations from instantaneous metabolic rates

Photosynthesis increases linearly with [CO2]

'léigh’r harvesting acclimation response does not reduce

m
Eelgrass tolerance of thermal stress increases with
CO, availability:

 Survival

e Size

* Absolute Growth

e Carbon reserves

Can these results predict:
natural eelgrass distributions?
Response to climate change?



Predicting Summer Die-Back and CO,
Rescue:

GrassLight Ver 2.13
Available from: rzimmerm@odu.edu



* Goodwin Islands
NERR

* Eelgrass affected
by
e Water quality
e Epiphyte load
e Periodic thermal

stress | g
® MOdel diSTr‘ibUTion LAI <0.576 0.577-2.3 2.3-4.0321 >4.031
Co nS iSTenT W i 1- h Percent cover <%]% 10\%'% 4([)—:7(|) % >71/o

field observations  vemmw ©>0s =050 mo-os

BN 05-1 EN._10-15MEN_15-20>20



* Cool summer
temperature

* Present-day CO,
(pH 8)

* What happens if
we increase

LAI <0.576 0.577-2.3 2.3-4.0321 >4.031
em pe r'a u r'e o Percent cover <10% 10 -40% 40-70 % >70%

Depth (m, MLW) = >+0.5 [E0+0.5-0 EH0-0.5
BN 05-1 MN_10-15MN_15-2 EN>20



- How will tfemperature an

interact to affect eelgrass
distribution?

* Warm summer
Temperature

* Present-day CO,
(p H 8 ) ( R, & _/‘_/“ w
* Eelgrass
d is.r r‘ i b u.r i O n d i es 7 <0.576 .577 -23 2.3-4.0321 >4.031

bCle ] - e [
Percent cover <10% 10 -40% 40-70 % >70%
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* Warm summer
Temperature

* CO, doubling (pH
7.8) causes re-

growth of
eelgrass

LAI <0.576  0.577-23  2.3-40321  >4.031
] ] = |

Percent cover <10% 10 -40% 40-70 % >70%

Depth (m, MLW) = >+0.5 [E0+0.5-0 EH0-0.5
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So, where do we go from here?

» Sediment diagenesis responds to temperature
 Sulfide production

e Nutrient remineralization

e (Carbonate dissolution

Sediment Diage

nesis
& Blue Carbor/




, o, where do we go

from here?

* Trophic cascades
will affect epiphytes

Sediment Diage

nesis
& Blue Carbor/




0, wher'e do w MAII of Whlch
from here? is affected
by human
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