OCEAN ACIDIFICATION IMPACTS ON FUTURE PHYTOPLANKTON COMMUNITIES

Stephanie Dutkiewicz

Massachusetts Institute of Technology

Jeff Morris (U Alabama), Jeff Scott (MIT), Mick Follows (MIT), Sonya Dyhrman (Columbia U), Ilana Berman-Frank (Bar-Ilan U)

See Poster: Morris et al

- Literature review (49 papers, 154 experiments)
- Comparison between growth at ambient and elevated pCO₂
- Define Growth Rate Response (GRR):

GRR =
$$\frac{\text{growth rate at elevated pCO}_2}{\text{growth rate at ambient pCO}_2}$$

increased growth rate under enhanced CO₂

decreased growth rate under enhanced CO₂

See Poster: Morris et al

Single species short term exp

single species long term exp

shipboard exp

GRR =

growth rate at elevated pCO₂ growth rate at ambient pCO₂

What is implication of this range to phytoplankton communities in the future ocean?

Use an biogeochemical/ecosystem model as a laboratory

- 3-D global ocean model embedded in a earth system model of intermediate complexity
- Ocean biogeochemistry: C, N, P, Si, Fe, Alkalinity; DOM, POM
- Ocean ecosystem: 96 phytoplankton types in 6 functional groups (growth is function of I, T, nutrients, pCO₂)
 2 grazers
- 1860 spinup
 1860 2100 business as usual emissions scenario

16 phytoplankton "types" within each functional group, each with different temperature optimum

phytoplankton "types" arranged in order of temperature optimum

What is implication of this range to phytoplankton communities in the future ocean?

Use an biogeochemical/ecosystem model as a laboratory

GRR = $\frac{\text{growth rate at elevated pCO}_2}{\text{growth rate at ambient pCO}_2}$

GRR = $\frac{\text{growth rate at elevated pCO}_2}{\text{growth rate at ambient pCO}_2}$

phytoplankton "types" arranged in order of temperature optimum

each "type" has random assignment of growth rate response to elevated pCO₂ (GRR)

Business as Usual emissions scenario (similar to RCP8.5)

phytoplankton "types" arranged in order of temperature optimum

each "type" has
random assignment of
growth rate response
to elevated pCO₂ (GRR)

SUMMARY

 Response relative to competitor matters: range in response to enhanced pCO₂ leads to significant rearrangement of communities

physical changes only (temperature, circulation, seaice); pCO₂ kept at 1860

pCO₂ changes only; temperature, circulation, seaice kept at 1860

all stressors

pCO₂ changes only

physical changes only

functional composition

$$C_{fr}(t) = \sum_{k}^{K} \min(\frac{F_k(t)}{\sum_{k}^{K} F_k(t_o)}, \frac{F_k(t_o)}{\sum_{k}^{K} F_k(t_o)})$$

SUMMARY

 Response relative to competitor matters: range in response to enhanced pCO₂ leads to significant rearrangement of communities

 Community changes driven by combination of drivers, but OA could be one of strongest drivers of change of functional composition (relative to warming and reduction in nutrients)

all stressors
pCO₂ changes only
physical changes only

210020001860

2000

2100 pCO₂ (1860), all other changes

2100 all changes

SUMMARY

 Response relative to competitor matters: range in response to enhanced pCO₂ leads to significant rearrangement of communities

 Community changes driven by combination of drivers, but OA could be one of strongest drivers of change of functional composition (relative to warming and reduction in nutrients)

all stressors
pCO₂ changes only
physical changes only

 understanding long timescales of competitionand transport- mediated adjustment essential predicting community changes

2000

2100

MUSINGS

"... all models are wrong, but some are useful"

G. Box

MUSINGS

"... all models are wrong, but some are useful" G. Box

since transport of and long timescale competition important: models are essential along with lab and fields studies to further our understanding of long term OA driven changes

FUTURE MODEL NEEDS

- experiments of competition both inter- and intrafunctional groups
- long term (evolution) responses

- need to understand synergistic response to multiple stressors
- Include calcification/N₂ fix changes etc

Flynn et al, 2015

SUMMARY

 Response relative to competitor matters: range in response to enhanced pCO₂ leads to significant rearrangement of communities

 Community changes driven by combination of drivers, but OA could be one of strongest drivers of change of functional composition (relative to warming and reduction in nutrients)

all stressors
pCO₂ changes only
physical changes only

 understanding long timescales of competitionand transport- mediated adjustment essential predicting community changes

2000

2100

EXTRA SLIDES

all stressors

pCO₂ changes only

physical changes only

all stressors

physical changes only

pCO₂ changes only

