Exploring the role of bottom-up provisioning by consumers across ecosystems

Ocean Carbon and Biogeochemistry Workshop 28 June 2017

http://atkinsonlab.ua.edu

Acknowledgements

Linking biodiversity and ecosystems: towards a unifying ecological theory

Michel Loreau

Phil. Trans. R. Soc. B 2010 365, 49-60

"A major future challenge is to determine how biodiversity dynamics, ecosystem processes, and abiotic factors interact."

Biodiversity-Ecosystem Function

Abiotic environment

Temperature, nutrient supply, geology,...

Biodiversity Species richness, composition, interactions,....

Ecosystem functioning Productivity, biomass, nutrient cycling,....

Conducting ecological research across scales

Consumer-driven nutrient dynamics

Excretion and egestion of nutrients are proportional to the ingestion of an element

Consumption

C:N:**P**

Animals are considered stoichiometrically homeostatic and are storing nutrients.

C:N:P Resources

Excretion rates scale with mass and temperature

Consumer-driven nutrient dynamics

Consumer-Driven Nutrient Dynamics

How do we examine if consumer effects are important for higher trophic levels and ecosystem function?

Consumer-Driven Nutrient Dynamics

Atkinson et al. In press, Biological Reviews

Organismal Traits

Tissue composition, Body size, Feeding guild, Temperature preference, Growth rate, Reproductive strategy, Lifespan, Evolutionary history Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: a global synthesis

Rates vary due to body mass, temperature, and vertebrates vs invertebrate (Vanni and McIntyre 2016) Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: a global synthesis

MICHAEL J. VANNI^{1,3} AND PETER B. MCINTYRE²

Excretion N:P most strongly driven by body size in this data set (Vanni and McIntyre 2016)

Stoichiometric Traits

Alabama, Atkinson, unpublished

Vanni et al. 2002

Also, variation in N:P due to age and phylogenetic grouping *Ecology*, 94(2), 2013, pp. 521–529 © 2013 by the Ecological Society of America

Consumers regulate nutrient limitation regimes and primary production in seagrass ecosystems

JACOB E. ALLGEIER,^{1,3} LAUREN A. YEAGER,² AND CRAIG A. LAYMAN²

Allgeier et al. 2013 (*Ecology*)

Population Effects

Population size, Age/size structure, Distribution, Migration, Biomass

N Areal Excretion

Capps and Flecker 2013

Rugenski et al. In review

Allgeier et al. 2014 (Global Change Biology)

Transects selected and abiotic variables measured at each quadrat

A GPS coordinate was taken at each quadrat

Mussel Sampling: Quantitatively sampled 12 sites with georeferencing.

Quadrats were dug with all material going into a mesh bag All bags were sorted using a series of sieves and mussels

measured

Excretion and egestion rates measured for 12 species

species encountered

Excretion Rates

N Excretion Rates

P Excretion Rates

Densities

Average = 35 indiv m⁻²

Areal P Excretion

Average = 44.9 μ g P m⁻² h ⁻¹

Average = 35 indiv m⁻²

Average = 369 μ g NH₄-N m⁻² h ⁻¹

Biomass-corrected average N:P of Excretion = 18.2; Background water column N:P ~8.9

Some species doing more than what their biomass would suggest

- Big contributors:
 - Pleurobema decisum
 - Obovaria unicolor

Applying a Average Excretion value versus the Species-Weighted			
N Excretion			
	Percent		
Accuracy	Coverage		
Underestimate	2.6		
Good	43.2		
Small			
Overestimate	46.5		
High			
Overestimate	7.7		

Do species matter?

Do species matter? Applying a Average Excretion value versus the Species-Weighted

P Excretion

	Percentage	
Accuracy	Coverage	
Underestimate		4.6
Good		90.7
Small		
Overestimate		2.4
High		
Overestimate		2.3

Do species matter? Applying a Average Excretion value versus the Species-Weighted

N:P Excretion

	Percent
Accuracy	Coverage
Underestimate	2.0
Good	64.7
Small	
Overestimate	23.4
High	
Overestimate	10.0

Effects on Ecosystem Processes

Nutrient limitation, Biogeochemical cycling, Production, Decomposition, Energy flow within food webs, Sink-subsidy dynamics

Organism effects are often temporally and spatially variable

Roman and McCarthy 2010 (PLoS One)

FISH DISTRIBUTIONS AND NUTRIENT CYCLING IN STREAMS: CAN FISH CREATE BIOGEOCHEMICAL HOTSPOTS?

Peter B. McIntyre,^{1,2,7} Alexander S. Flecker,¹ Michael J. Vanni,³ James M. Hood,⁴ Brad W. Taylor,⁵ AND STEVEN A. THOMAS⁶

¹Department of Ecology and Evolutionary Biology, Cornell University, Itha ²School of Natural Resources and Environment, University of Michigan, Ann ³Department of Zoology, Miami University, Oxford, Ohio 4 ⁴Department of Ecology, Evolution, and Behavior, University of Minnesota, St. ⁵Department of Biological Sciences, Dartmouth College, Hanover, New ⁶School of Natural Resources, University of Nebraska, Lincoln, New

Abstract. Rates of biogeochemical processes often vary widely characterizing this variation is critical for understanding ecosystem spatial hotspots of nutrient transformations are generally attributed processes. Here we examine the potential for heterogeneous distrib hotspots of nutrient recycling. We measured nitrogen (N) and phosp of 47 species of fish in an N-limited Neotropical stream, and we c

Biogeochemical hotspots

patches that show disproportionately high reaction rates relative to the surrounding matrix (McClain et al. 2003)

OPEN O ACCESS Freely available online

PLOS ONE

Invasive Fishes Generate Biogeochemical Hotspots in a Nutrient-Limited System

Krista A. Capps^{1,2}*, Alexander S. Flecker¹

1 Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America, 2 Sustainability Solutions Initiative, University of Maine, Orono, Maine, United States of America

Abstract

Fishes can play important functional roles in the nutrient dynamics of freshwater systems. Aggregating fishes have the potential to generate areas of increased biogeochemical activity, or hotspots, in streams and rivers. Many of the studies documenting the functional role of fishes in nutrient dynamics have focused on native fish species; however, introduced fishes may restructure nutrient storage and cycling freshwater systems as they can attain high population densities in novel environments. The purpose of this study was to examine the impact of a non-native catfish (Loricariidae: *Pterygoplichthys*) on nitrogen and phosphorus remineralization and estimate whether large aggregations of these fish generate measurable biogeochemical hotspots within nutrient-limited ecosystems. Loricariids formed large aggregations during daylight hours and dispersed throughout the stream during evening hours to graze benthic habitats. Excretion rates of phosphorus were twice as great during nighttime hours when fishes were actively feeding; however, there was no diel pattern in nitrogen excretion rates. Our results indicate that spatially heterogeneous aggregations of loricariids can significantly elevate dissolved nutrient concentrations via excretion relative to ambient nitrogen and phosphorus concentrations during daylight hours, creating biogeochemical hotspots and potentially altering nutrient dynamics in invaded systems.

Atkinson and Vaughn 2015, Freshwater Biology Special Issue

Mussel Nutrient Recycling

Hotspots of nutrient regeneration – densest beds >600 mol N d⁻¹ = >8.5 kg N d⁻¹ = >3 metric tons N y⁻¹

Atkinson and Vaughn 2015, Freshwater Biology Special Issue

Stoichiometry and Species Traits

Meets the expectations of ecological stoichiometry

Higher excretion N:P = beds dominated by *Actinonaias ligamentina*

A. ligamentina classified as a thermally sensitive species*

*Spooner & Vaughn 2008 (*Oecologia*)

Storage & Sequestration

Mussels live 5 to >50 years (Shell = long term store, "nutrient sink"*)

Across the Kiamichi (47 reaches) ~ Storing:

- 14 tons C
- 5 tons N
- 0.5 tons P

*Vanni et al. 2013 (*Ecology*) Atkinson et al. 2015 (*FWB*) Atkinson et al. *Accepted, Ecosystems*

Consumer Aggregations Drive Nutrient Dynamics and Ecosystem Metabolism in Nutrient-Limited Systems

Carla L. Atkinson,¹* Brandon J. Sansom,² Caryn C. Vaughn,³ and Kenneth J. Forshay⁴

In press

Mussels are acting as sequestration and cycling hotspots

Higher gross primary productivity in reaches with mussels

Alleviation of Nitrogen Limitation by Mussels

Diatoms Mussel Sites ٩N No Mussel Sites С \cap ã Greens Blue-greens

Difference in benthic algae community composition

Atkinson et al. 2013 (Ecology)

Nutrient recycling by mussels: comparing to uptake rates and tracing N in the food web

DOI: 10.1007/s10021-013-9736-2

© 2013 Springer Science+Business Media New York

Tracing Consumer-Derived Nitrogen in Riverine Food Webs

Carla L. Atkinson,* Jeffrey F. Kelly, and Caryn C. Vaughn

Tracing $\delta^{\rm 15} {\rm N}$ into the Food Web

Little River, Oklahoma

Nutrient Uptake Measurements

Excretion Rate Measurements

Increased
bass growth*

Mussel Derived N moved into the food web

Mussels meet up to 40% of N demand; could be up to 98% in natural mussel beds

Up to 70% of N in the tissue of organisms near mussels beds from N remineralized by mussels

> Atkinson et al. 2014 (*Ecosystems*) *Sansom et al. *In prep*

Under increased human impact - implications

Climate change, Fishing pressure, Nutrient loading, etc.

Over-fishing & Habitat Fragmentation

Areal excretion $\mu g \cdot m^{-2} \cdot h^{-1}$ for NH_4 -N and TDP-P

Layman et al. 2011 (Ecological Applications)

ECOLOGY LETTERS

Ecology Letters, (2013) 16: 1115–1125

doi: 10.1111/ele.12146

LETTER

Nutrient loading associated with agriculture land use dampens the importance of consumer-mediated niche construction

Abstract

Daniel E. Spooner,^{1,2}* Paul C. Frost,¹ Helmut Hillebrand,³ Michael T. Arts,⁴ Olivia Puckrin¹ and Marguerite A. Xenopoulos¹ The linkages between biological communities and ecosystem function remain poorly understood along gradients of human-induced stressors. We examined how resource provisioning (nutrient recycling), mediated by native freshwater mussels, influences the structure and function of benthic communities by combining observational data and a field experiment. We compared the following: (1) elemental and community composition (algal pigments and macroinvertebates) on live mussel shells and on nearby rocks across a gradient of catchment agriculture and (2) experimental colonisation of benthic communities on live vs. sham shells controlling for initial community composition and colonisation duration. We show that in near pristine systems, nutrient heterogeneity mediated by mussels relates to greater biodiversity of communities, which supports the notion that resource heterogeneity can foster biological diversity. However, with increased nutrients from the catchment, the relevance of mussel-provisioned nutrients was nearly eliminated. While species can persist in disturbed systems, their functional relevance may be diminished or lost.

Consumers lead to greater nutrient heterogeneity, but enhanced nutrient loading dampens this.

What are the ecological consequences for the continued loss species?

http://droughtmonitor.unl.edu

Atkinson et al. 2014, Biological Conservation

Reduction of Thermally Sensitive Species

Loss in ecosystem function

Remineralization

- 30% N loss = 40 μmol N m⁻² h⁻¹
- -20% P loss = 5 μ mol P m⁻² h⁻¹

Storage Average

- -29% Loss = >15 g N m⁻²
- 30% P Loss = 5 g Pm⁻²

Atkinson et al. 2014 (Biological Conservation)

Alteration of N:P

Excretion N:P increased with increasing numbers of thermally sensitive species, but not significantly (p = 0.10) N:P declined significantly due to drought conditions (W = -45.0, p = 0.004)

Excretion N:P was predicted by tissue N:P

Atkinson et al. 2014 (Biological Conservation)

Stoichiometric traits may vary as a function of tolerance

Modified from Diaz et al. 2013 (Ecology and Evolution)

Low Vulnerability High

If we understand the traits and functions that may be lost, we can better predict the ramifications of ecological change.

Can we link traits to species responses to abiotic conditions to understand ecosystem vulnerability and predict species losses and consequential declines in ecosystem function?

Physicochemical –structure (Temp, nutrient limitation, geology)

Community Structure (Density, biomass, body size of species)

ANY QUESTIONS?

More info Email: clatkinson@ua.edu Website: https://atkinsonlab.ua.edu

> "Mussels are not dismissible, even by those who have little interest in the natural world. Their presence is a signature of healthy aquatic ecosystems, to which they contribute as living water filters."

> > - E.O. Wilson

Tadpole chamber experiment

What are the effects of tadpoles & invertebrate shredders on leaf decomposition processes?

4 Treatments: 32 day incubation Control Tadpoles (Grazer on algae) Tadpoles + Shredders Shredders

* Natural stream densities used for each chamber

Smilisca Rugenski et al. 2012

Anchytarsus

Phylloicus

Chamber experiment

↑ Respiration in Tadpole & Tadpole+INV

 \uparrow Leaf area loss in Tadpole+INV

Facilitation between tadpoles & shredding macroinvertebrates

Stoichiometric Traits, Age, and Phylogeny

Some phylogenetic signal

Decline in N:P with age