

The role of vertically migrating zooplankton in biogeochemical flux

Sigrún Huld Jónasdóttir

National Institute of Aquatic Resources - DTU Aqua Section for Oceans and Arctic sjo@aqua.dtu.dk

André W. Visser Josephine Grønning, Anne Morgen Mark

DTU Aqua National Institute of Aquatic Resources

OCB meeting Woods Hole, 28 June 2017

Outline

- Different roles of zooplankton in the biological pump
- Diel vertical Migration DVM
 Active N:P transport by zooplankton
- Ontogenic vertical Migration OVM
 The Lipid Pump now with N & P
 The Lipid Shunt

Biological pump

Passive flux of POM

S.W. Chisholm, Nature 2000 Vol 407

Role of zooplankton in flux

Photo: Eric Selander

Photo: Sigrun Jonasdottir

Grazing 0-50 m Packaging - Compacting small into large faster sinking particles

Sloppy feeding – releasing nutrients

Scavengers – mid waters Breaking up marine snow to smaller slower sinking particles releasing DOM and slowing down POM flux.

Drawing: Jamie Pierson

Photo: Sigrun Jonasdottir

Diel Vertical Migration DVM - up-to 400 m depth Fast track for faecal pellet flux + Excretion of nutrients @ depth

Ontogenic Vertical Migration OVM 500-3000 m Lipid pump CO_2 sequestration, Lipid shunt

Mortality: lipid rich carcasses

Active flux by zooplankton

S.W. Chisholm, Nature 2000 Vol 407

Diel Vertical Migration - DVM

- Trade-off: risk, feeding & cost
- Varies between latitudes
- Varies seasonally

Hansen & Visser (2016) L&O 61

Depth of DVM

DTU

DTU

DVM - estimated C flux

Carbon export by vertically migrating zooplankton: an optimal behavior model L&O 2016

Agnethe N. Hansen*, André W. Visser

VKR Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund, Denmark

How about Excretion of nutrients?

DTU

How about Excretion of nutrients?

Cecelia C.S. Hannides ^{a,*,1}, Michael R. Landry ^b, Claudia R. Benitez-Nelson ^c, Renée M. Styles ^c, Joseph P. Montoya ^d, David M. Karl ^a

- ^a Department of Oceanography, University of Hawaii, 1000 Pope Rd., Honolulu, HI 96816, USA
- ^b Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- ^c Department of Geological Sciences, University of South Carolina, 700 Sumter Street, EWS 408, USA ^d School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, USA

Ontogenic Vertical Migration - OVM

Overwintering strategies

Overwintering depths >600m

Baumgartner and Tarrant 2017 Ann.Rev.Mar.Sci

Lipid accumulation

Oil sac: 100% WE WE: 70% DW

Wax Ester ca 80% Carbon

Annual Carbon transport

ca 0.5-10 gC m⁻² yr⁻¹

Total: 5 MT C transported year⁻¹ in this area by *Calanus finmarchicus* only.

> 600 km coal train

Lipid pump – what is left behind – respired CO₂

Population Abundance in diapause Life history strategies => Capital or income breeder

If capital breeder – Number of eggs produced

OW temperatures for respiration

Size / Stage structure for estimating lipid content

Assumptions:

Lenath

Metabolic rate 2.5 x $10^{-7} \mu g C^{1/4} s^{-1}$ Arousal of diapause when 85% lipid_{max} content is burned Mortality (non predatory) : 0.001 d⁻¹

Model calculations length of diapause

Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic

Sigrún Huld Jónasdóttir^{a,1}, André W. Visser^{a,b}, Katherine Richardson^c, and Michael R. Heath^d

^aNational Institute for Aquatic Resources, Oceanography and Climate, Technical University of Denmark, DK-2920 Charlottenlund, Denmark; ^bCenter for Ocean Life, Technical University of Denmark, DK-2920 Charlottenlund, Denmark; ^cCenter for Macroecology, Evolution and Climate, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; and ^dDepartment of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, Scotland, United Kingdom

Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved August 13, 2015 (received for review June 20, 2015)

PNAS 112 no. 39 Sept 2015

LIMNOLOGY and OCEANOGRAPHY

Linnol. Ocanogr. 00, 2017, 00-00 © 2017 Association for the Sciences of Linnology and Oceanography doi: 10.1002/lno.10492

Calanus hyperboreus and the lipid pump

Andre W. Visser,* Josephine Grønning, Sigrún Huld Jónasdóttir VKR Centre for Ocean Life, National institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark

Limn. Oceanogr. 62, May 2017

The Lipid Pump

Sequestration of overwintering *C. finmarchicus* and *C. hyperboreus*

0.5 to 8 gC m⁻² yr⁻¹ => 2 to 8 gC m⁻² yr⁻¹ sinking passive C flux @ same depth

Wax Ester

- ca 80% Carbon
- No Nitrogen
- No phosphorus

DTU

Wax ester synthesis

DTU

"Actively feeding copepods characteristically excrete copious amounts of ammonia derived from dietary amino acids..... the animal may be channelling dietary amino acids away from growth and instead discarding amino N as ammonia leaving the carbon skeletons of amino acids to form fatty alcohol"

Sargent et al 1977

0

LS

IRM

EGS

ICS

ICB

ROC

WNS

ENS

NS

Deep-Sea Research I 98 (2015) 76-82

ca 80 kT C/yr

Calanus finmarchicus and C. hyperboreus

Calanus finmarchicus hyperboreus glacialis pacificus helgolandicus carinatus acutus australis sincus marshalle chilensis Neocalanus tonsus plumchrus cristatus flemingeri Calanoides carinatus

acutus

Rhincalanus gigas Eucalanus bungii californicus

SUMMARY

Biological pump: particle flux and microbial mineralization

Biological pump: particle flux and microbial mineralization

Biological pump: particle flux and microbial mineralization + zooplankton migration, both DVM and OVM

Biological pump: particle flux and microbial mineralization + zooplankton migration, both DVM and OVM

DTU

Conclusion

