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Meso- and Submesoscale instabilities
Visualizing 3D export of non-sinking POC
What about long-term sequestration?

What about sinking particles?



Meso- and Submesoscale instabilities

Generally arise in regions of strong
lateral buoyancy gradients (at fronts)

1) Baroclinic instabilities, frontogenesis
2) Mixed Layer instabilities

3) Symmetric Instabilities (eg. Ekman
buoyancy flux)

4) Gravitational instabilities

(D’Asaro, 2011)

The temporal and spatial scales, and BGC impacts vary for each.
There are also lots of sources of variability at small scales

Observing these processes is an active area in PO, much has been learned
through numerical models
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A numerical simulation of a submesoscale instability (Thomas, 2012)
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A numerical simulation of a submesoscale instability (Thomas, 2012)
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, Ageostrophic motion drives a cross-front circulation, creating downward velocity on the cold side



Visualizing eddy-driven export



































































































































































































































































What about long-term sequestration?

In these simulations, the along-
isopycnal eddy-driven flux does not
move carbon deeper than the deep
winter mixed layer.
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What about long-term sequestration?

In these simulations, the along-
isopycnal eddy-driven flux does not
move carbon deeper than the deep
winter mixed layer.

Carbon was exported through becoming trapped below the
mixed layer as summertime warming intensified stratitication.

Aggregation, slow sinking, large-scale circulation are likely
important for POC exported by eddies to remain sequestered
over years

We need observations that can track and observe particle
transformations on subducted water over weeks to seasons.



What about sinking particles?

High variability in sinking export is seen at submesoscales
(Estapa et al. 2015) and enhanced at fronts (Stukel et al. 2017)

offshore  front coastal
(Stukel et al. 2017)




The sinking rates of most particles overlaps with the vertical
velocities of many physical processes

Vertical Subduction Rate (m/day)
-1

10 1 00 1 OI 1 02 1 03
I I I I I
Ekman pumping and Mesoscale Submesoscale processes Boundary Layer
large scale subduction  eddies Net: Synoptic: T
0(01 to 1) m/d 0(0.5-2) m/d O(10 to 40) m/day O(20 to 200) m/day Synoptic:
.1 to 1) m/day .5-2) m/day
e.g., Spall (1995) €-9.. Mahadevan (2006) O(200 to 2000) m/day
e.g., Stommel (1979)  e.g., Marshall (1997) Thomas and Joyce (2010) e.g., Steffen and D’Asaro (2002)
Williams et al. (1995) Mahadevan and Tandon (2006) D’Asaro (2014)

Follows et al (1996)

Sinking Rate (m/day)

-1
10 10° 10' 10° 10°
I I I I I
Single Cells -  Single Cells - microplankton Aggregates Fecal pellets
picoplankton
O(0.1 to 100) m/day O(10-400)m/day O(5-2700) m/day
negligible e.g., Alldredge and Gotschalk (1998) e.g., Kajihara (1971)
e.g., McCave (1975) Nowald et al. (2009) gTurner (2002)

Iversen et al. (2009)



Instruments that can resolve sinking particle abundance and types
over km and days (eg. Bishop et al. 2016) can provide clues as to
physical and/or biological sources of small-scale variability
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Models and observations suggest that submesoscale subducted
features are often co-located with regions of negative relative
vorticity



