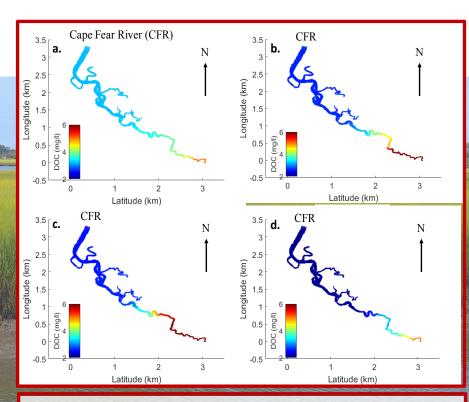
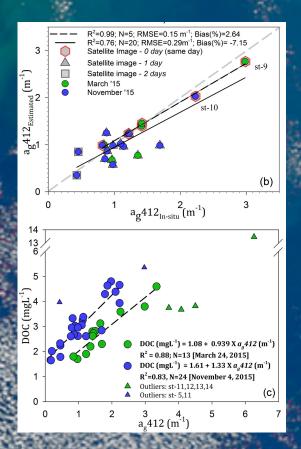
Wetland Dissolved Organic Carbon (DOC) Fluxes at Small and Large Scales

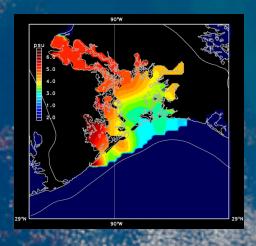
OCB Summer Workshop: Lateral Fluxes and Exchanges, 26 June 2017


Chris Osburn, Diana Oviedo-Vargas, Cindy Lebrasse, Del Bohnenstiehl, Roy He – NCSU Ana Arellano, Tom Bianchi – UF Eurico D'Sa, Ishan Joshi – LSU Dong Ko – US NRL

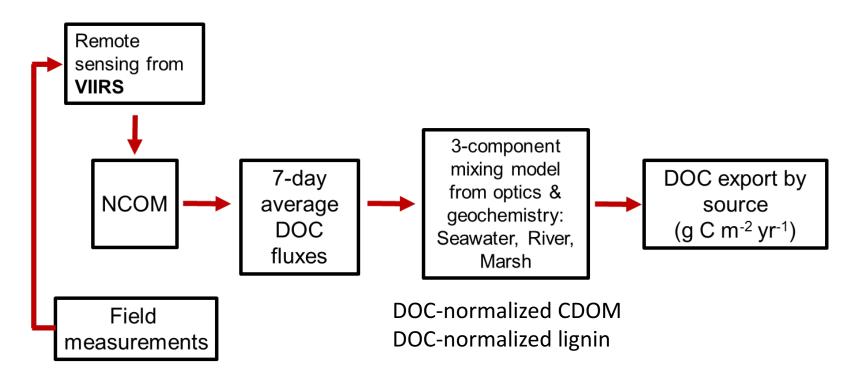
Small Scale

- Unmanned Surface Vehicle (USV)
 - Bathymetry
 - ADCP
 - Chl, CDOM fluorescence
 - CTD

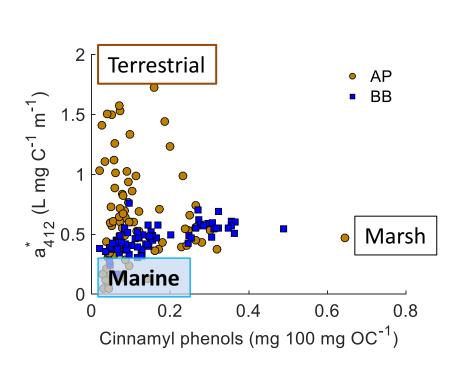

- Use SCHISM salt fluxes
- Convert salt to DOC


Month	DOC flux	DOC export	Net annual DOC
	(g C day ⁻¹)	(g C m ⁻² day ⁻¹)	export
			(g C m ⁻² y ⁻¹)
March	2.69 x 10 ⁵	-0.236	-86

Large Scale: Wetland fluxes through Apalachicola Bay and Barataria Bay


BB

AP



Large Scale: Wetland fluxes through Apalachicola Bay and Barataria Bay

NCOM: Navy Coastal Ocean Model (for the LA-TX shelf)

Mixing model to apportion DOC to sources, apply to flux model

$$DOC Flux = \sum_{i=1}^{n} \sum_{k=1}^{m} [DOC(i,k) \times U(i,k)] dz(k) dx(i)$$

Table 1. Estimates of net daily DOC fluxes and annual DOC
export values from Apalachicola Bay and Barataria Bay,
respectively, to the northern Gulf of Mexico.

Month	7-day average DOC flux (x10 ⁶ kg C day ⁻¹)	Net annual DOC export (x10 ⁶ g C m ⁻² y ⁻¹)	Blue Carbon DOC export (x10 ⁶ g C m ⁻² y ⁻¹)
AP	0.144	8.35	0.14
ВВ	0.089	7.14	0.95