Shallow Ponds and Marsh Carbon Metabolism

Amanda C. Spivak

Kelsey Gosselin, Inke Forbrich, Giulio Mariotti, Evan Howard, Meagan Gonneea, Sean Sylva

Member of the U.S. Long Term Ecological Research Network

Shallow Ponds and Marsh Carbon Metabolism

Amanda C. Spivak Journal of Geophysical Research: Biogeosciences

RESEARCH ARTICLE

10.1002/2017JG003780

Key Points:

• Shallow ponds can be prominent features of salt marsh landscapes but

Shallow ponds are heterogeneous habitats within a temperate salt marsh ecosystem

Amanda C. Spivak¹, Kelsey Gosselin¹, Evan Howard¹, Giulio Mariotti², Inke Forbrich³, Rachel Stanley^{1,4}, and Sean P. Sylva¹

Salt Marsh Ponds

Can be prominent features of salt marsh landscapes

... but are rarely incorporated into assessments of ecosystem-level functioning!

Whole-Pond Oxygen Metabolism

Net production

Respiration

Metabolism rates range from net autotrophic to net heterotrophic

Sediment Metabolism

Benthic fluxes varied across ponds but not seasons

DIC fluxes were faster during isolated tides

SR accounted for ~70% of DIC flux

'Cryptic' cycling of e- acceptors is likely important!

Respiration Can Account for Pond Formation & Expansion

¹³⁷ Cs (mm y ⁻¹)	²¹⁰ Pb (mm y ⁻¹ ; CIC)
P1 0.70	P1 0.36
P2 0.30	P2 0.37
P3 0.29	P3 1.31

Marsh 2.5 mm y⁻¹

Calculated 8–19 mmol C m⁻² d⁻¹ ≤ Measured 16–39 mmol C m⁻² d⁻¹ (SW) ≈ Measured 2–21 mmol C m⁻² d⁻¹ (DIC Efflux)

How do Ponds affect Marsh Metabolism?

Emergent Grass/Soil + Pond Metabolisms based on land cover: Ecosystem Net Production: Summer -8.1 – -11.9%, Fall -9.4 – -15.7% Ecosystem Respiration: Summer: -5.1 – -5.9%; Fall: -2.9 – -10%

Accounting for Ponds Estimates of <u>Ecosystem</u> Production & Respiration

Conclusions

- Ponds are heterogeneous and biogeochemically distinct habitats
- OM decomposition and marsh accretion are likely the main mechanisms for pond formation and expansion
- Pond expansion will likely have a larger, negative impact on Marsh NEP than R, and will <u>reduce</u> OM Burial and Storage

