Physiological diversity matters: a modelling perspective

Stephanie Dutkiewicz
Massachusetts Institute of Technology
Acknowledgments:
Ben Ward
Chris Follett
Mick Follows
Oliver Jahn
Anna Hickman
Global 3-D biogeochemical, ecosystem models

• What is state of the art in terms of diversity?

• Why including physiological diversity matters?
 - some examples

• Other aspects of physiological parameterization
 (hopefully to lead to discussion)
Global 3-D biogeochemical, ecosystem models

Physics:
velocity, mixing, temperature

Biogeochemistry:
nutrients, DOM, POM

Ecosystem:
phytoplankton, zooplankton

Movie credit: Oliver Jahn and Mick Follows
What is the state of the art?

Diverse phytoplankton communities

Physiological diversity matters: a modelling perspective
Global 3-D biogeochemical, ecosystem models

- What is state of the art in terms of diversity?
What is the state of the art?

Global 3-D biogeochemical, ecosystem models

e.g. Six and Maier-Reimer, GBC, 1996.
What is the state of the art?

Global 3-D biogeochemical, ecosystem models

e.g. Chai et al, 2002; Moore et al, 2002; Aumont et al, 2005; Dutkiewicz et al., 2005

Physiological diversity matters: a modelling perspective
What is the state of the art?

Global 3-D biogeochemical, ecosystem models

e.g. Gregg et al, 2003; LeQuere et al 2005; Aumont et al, 2014; Dutkiewicz et al 2015
Global 3-D biogeochemical, ecosystem models

e.g. Ward et al, L&O 2012

Following from 0-D models:
Moloney and Fields, 1991;
Armstrong, 1994; Baird et al, 2007

What is the state of the art?

Physiological diversity matters: a modelling perspective
What is the state of the art?

Global 3-D biogeochemical, ecosystem models

e.g. Ward et al, PNAS, 2016

Physiological diversity matters: a modelling perspective
What is the state of the art?

Global 3-D biogeochemical, ecosystem models

Current models have range of complexity, including:

- only a 2 or a handful functional types (many climate models)

- many types with more complex ecosystems
 - set traits (e.g. Ward et al, L&O, 2012)
 - random assignment of traits
 (e.g. Follows et al, Science 2007; Coles et al, Science, 2017)
Global 3-D biogeochemical, ecosystem models

• What is state of the art in terms of diversity?

• Why including physiological diversity matters:
 - Example 1: size classes within functional groups
 - Example 2: trophic strategy
 - Example 3: symbiosis
PHYSIOLOGICAL DIVERSITY MATTERS

Physiological diversity matters: a modelling perspective
EXAMPLE 1: SIZE CLASSES WITHIN FUNCTIONAL GROUPS

Physiological diversity matters: a modelling perspective
EXAMPLE 1: SIZE CLASSES WITHIN FUNCTIONAL GROUPS

Laboratory Results:
Tang, 1995;
Maranon et al 2013;
Sarthou et al 2005;
Buitenhuis et al, 2008

Change in slope for pico-phytoplankton:
deLong et al, PNAS, 2010
Kempes et al, PNAS, 2012
Maranon et al, Ecol. Let., 2013

Cost of Nitrogen Fixation:
Fu et al, J Phy, 2005
Goebel et al, J Phy, 2008
Inomura et al, ISME, 2016

Cost of Calcification:
Anning et al, JMR, 1996; Raven and Crawfurd,
MEPS, 2012; Brownlee et al, 2004;

Mixotrophy
Litchman et al, Ecol Let, 2007:

Diatoms:
Raven et al, Bio Rev, 1983

Cost of Carbon Fixation:
Fu et al, J Phy, 2005
Goebel et al, J Phy, 2008
Inomura et al, ISME, 2016

Mixotrophy
Litchman et al, Ecol Let, 2007:

Diatox:
Raven et al, Bio Rev, 1983

pico-phytoplankton
diazotroph
coccolithophore
diatom
dinoflagellate

Physiological diversity matters: a modelling perspective
EXAMPLE 1: SIZE CLASSES WITHIN FUNCTIONAL GROUPS

Laboratory Results:
Tang, 1995;
Maranon et al 2013;
Sarthou et al 2005;
Buitenhuis et al, 2008

Physiological diversity matters: a modelling perspective
EXAMPLE 1: SIZE CLASSES WITHIN FUNCTIONAL GROUPS

Physiological diversity matters: a modelling perspective
EXAMPLE 1: SIZE CLASSES WITHIN FUNCTIONAL GROUPS

Simulation with size classes within functional groups

More traditional PFT model, with 2 functional types and 1 zooplankton

mean equivalent spherical diameter (um)

Treguer et al, Nat Geo, 2018
EXAMPLE 1: SIZE CLASSES WITHIN FUNCTIONAL GROUPS

present day biomass weighted mean cell diameter (um)

Dutkiewicz et al, in prep

Physiological diversity matters: a modelling perspective
EXAMPLE 1: SIZE CLASSES WITHIN FUNCTIONAL GROUPS

present day biomass weighted mean cell diameter (um)

“Business as usual” climate change scenario:
- Warmer waters
- Increased stratification
- Alterations to circulation

Dutkiewicz et al, in prep
EXAMPLE 1: SIZE CLASSES WITHIN FUNCTIONAL GROUPS

Present day biomass weighted mean cell diameter (um)

Change in cell diameter (um) (2100 – 1860)

- Trend towards smaller cells with lower nutrient supply
- Global average decrease of 2um by 2100
- In some regions >10um decrease

Dutkiewicz et al, in prep
EXAMPLE 1: SIZE CLASSES WITHIN FUNCTIONAL GROUPS

Change in Community Structure

Size differentiated
Functionally differentiated

0= community is same as pre-industrial
1= community is completely different to pre-industrial

Dutkiewicz et al, in prep
EXAMPLE 1: SIZE CLASSES WITHIN FUNCTIONAL GROUPS

Change in Community Structure

- Size differentiated
- Functionally differentiated

0 = community is same as pre-industrial
1 = community is completely different to pre-industrial

\[
\sqrt{\frac{\sum B_i(t)}{\sum B_i(t) - \sum B_i(t = 0)^2}}
\]

B is biomass in group

classical PFT model, with 2 P and 1 Z

EXAMPLE 1: SIZE CLASSES WITHIN FUNCTIONAL GROUPS

Physiological diversity matters: a modelling perspective
Climate Change Scenario:

- decrease in mean cell size; large in some regions (with consequences for higher trophic levels)

- size distribution changes ≠ functional change

- including only functional diversity over-estimates functional changes (with consequences for export and feedback to climate system)
Climate Change Scenario:

- decrease in mean cell size; large in some regions
 (with consequences for higher trophic levels)

- size distribution changes ≠ functional change

- including only functional diversity over-estimates functional changes
 (with consequences for export and feedback to climate system)

What would happen if we included evolution?
EXAMPLE 2: TROPHIC STRATEGY

Physiological diversity matters: a modelling perspective
EXAMPLE 2: TROPHIC STRATEGY

On the roles of cell size and trophic strategy in North Atlantic diatom and dinoflagellate communities

Andrew D. Barton, a,b,* Zoe V. Finkel, b Ben A. Ward, a,c David G. Johns, d and Michael J. Follows a

Continuous Plankton Recorder (CPR) data
EXAMPLE 2: TROPHIC STRATEGY

Simulation without mixotrophy

Simulation with mixotrophy

Physiological diversity matters: a modelling perspective
EXAMPLE 2: TROPHIC STRATEGY

Simulation without mixotrophy

Simulation with mixotrophy

Physiological diversity matters: a modelling perspective
EXAMPLE 2: TROPHIC STRATEGY

CPR OBSERVATIONS

Simulation with mixotrophy

Barton et al, L&O, 2013
EXAMPLE 2: TROPHIC STRATEGY

Physiological diversity matters: a modelling perspective

Simulation with mixotrophy

Barton et al, L&O, 2013

Biogeochemical Cycling 2018 OCB Workshop
Including mixotrophy:

- allows for larger cells to survive
 (with consequences for higher trophic levels and carbon export – see Ward and Follows, PNAS, 2016)

- it also changes the seasonal timing of the largest size
 (with consequences for higher trophic levels)

- allows laboratory to understand timing of size/functional distributions
EXAMPLE 3: SYMBIOISIS

Physiological diversity matters: a modelling perspective
EXAMPLE 3: SYMBIOISIS

Station Aloha Observations

Follett et al, ISME J, 2018

Physiological diversity matters: a modelling perspective
EXAMPLE 3: SYMBIOISIS

Physiological diversity matters: a modelling perspective

Station Aloha Observations

Follett et al, ISME J, 2018

Photo: Chris Follett
EXAMPLE 3: SYMBIOISIS

Physiological diversity matters: a modelling perspective
EXAMPLE 3: SYMBIOISIS

Physiological diversity matters: a modelling perspective

Dutkiewicz et al, in prep
EXAMPLE 3: SYMBIOISIS

Seasonal resource conditions favor a summertime increase in North Pacific diatom–diazotroph associations

Christopher L. Follett¹ · Stephanie Dutkiewicz¹ · David M. Karl²³ · Keisuke Inomura¹ · Michael J. Follows¹
ISME Journal, 2018

Physiological diversity matters: a modelling perspective
EXAMPLE 3: SYMBIOISIS

Physiological diversity matters: a modelling perspective

Treguer et al, Nat Geo, 2018
EXAMPLE 3: SYMBIOISIS

Large diatoms exist in oligotrophic regions due to symbiosis with nitrogen fixers,

With consequences to food web and carbon export

Note: this includes non-negative interactions
- see also poster by B.B. Cael

Treguer et al, Nat Geo, 2018
SUMMARY

The next generation of ecosystem models need to include diversity of physiological strategies:

- in order to obtain more realistic size structuring
- to capture the appropriate shifts in communities with climate change
- and consequences for higher trophic levels and carbon export
Global 3-D biogeochemical, ecosystem models

- What is state of the art in terms of diversity?
- Why including physiological diversity matters? - some examples
- Other aspects of physiological parameterization
 - flexible stoichiometry
 - treatment of multiple limiting factors
What is the state of the art?

Monod Kinetics
(fixed cell quotas)

C:N:P:Fe ~ 120:16:1:1e-3
What is the state of the art?

Monod Kinetics
(fixed cell quotas)

C:N:P:Fe \(\sim 120:16:1:1e-3\)

Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter

Adam C. Martiny\(^1,2\), Chau T. A. Pham\(^3\), Francois W. Primeau\(^1\), Jasper A. Vrugt\(^1,3\), J. Keith Moore\(^1\), Simon A. Levin\(^4\) and Michael W. Lomas\(^5\)

Nat Geo 2013

C:N:P \(\sim 195:28:1\) subtropics
137:18:1 warm upwelling
78:13:1 polar
What is the state of the art?

Monod Kinetics
(fixed cell quotas)

Droop/Caperon Kinetics
(variable cell quotas)

Droop (1968), Caperon stoichiometry function of environment

Shuter, 1979, Geider et al 1998, Pahlow 2005:
stoichiometry function of cell attributes

Several 3-D model include flexible Fe and Si, but few have full flexible C:N:P

Though see Chai-Te Chien’s poster
What is the state of the art?

Monod Kinetics (fixed cell quotas) Droop/Caperon Kinetics (variable cell quotas) Macromolecular Approach

What is the state of the art?

Single cell approach:
- Inomura et al, ISME, 2016
- Inomura et al, in prep

- See posters:
 Anne-Willem Omta
 B.B. Cael

Inclusion in 3-D model:
Kei Inomura (post-doc UW)
including this as parameterization
in 3-D model
Global 3-D biogeochemical, ecosystem models

- What is state of the art in terms of diversity?
- Why including physiological diversity matters?
 - some examples
- Other aspects of physiological parameterization
 - flexible stoichiometry
 - treatment of multiple limiting factors
What is the state of the art?

Growth rate:

$$\mu = \mu_{max} f (N, P, Fe, I, T, ...)$$
What is the state of the art?

Growth rate:

$$\mu = \mu_{max} f(N, P, Fe, I, T, ...)$$

$$= \mu_{max} \min(g(N, P, Fe)) \ h(I) \ i(T)$$
What is the state of the art?

Growth rate:

\[\mu = \mu_{max} f(N, T, ...) \]
growth as function of nutrients and temperature

\[\mu_{\text{max}} \frac{R}{R + \kappa_R} \gamma e^{\alpha T} \]

What is the state of the art?

Physiological diversity matters: a modelling perspective
growth as function of nutrients and temperature

\[
\mu_{\text{max}} \frac{R}{R + \kappa_R} e^{-\alpha T}
\]
Numerical model results: annual mean *Prochlorococcus* growth rates (1/d)

5um Diatom growth rates (1/d)
What should the next generation of 3-D ecosystem models include:

- Variable stoichiometry? How?

- Better representation of multiple limiting factors?
 - what laboratory/field studies do we need?
 - how universal are “planes” of multiple response functions

- Inclusion of more physiological diversity (e.g. mixotrophy, symbiosis)
 - but how much? do we know enough?
What is the state of the art?

Monod Kinetics (fixed cell quotas)

Droop/Caperon Kinetics (variable cell quotas)
EXAMPLE 2: TROPHIC STRATEGY

Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux

Ben A. Warda,b,1 and Michael J. Followsc

PNAS, 2016
Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux

Ben A. Ward and Michael J. Follows

PNAS, 2016

EXAMPLE 2: TROPHIC STRATEGY

- mixotrophy allows for larger cells;
- more realistic size distribution
- and increases the carbon export

Physiological diversity matters: a modelling perspective
What is the state of the art?

Phylogenetic Diversity in the Macromolecular Composition of Microalgae

Zoe V. Finkel¹ *, Mick J. Follows², Justin D. Liefer¹, Chris M. Brown³, Ina Benner¹, Andrew J. Irwin⁴

PlosOne 2016

Observation of Macromolecular Pools

Physiological diversity matters: a modelling perspective