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LOSS IN MULTIYEAR SEA-ICE
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EARLIER BREAKUP & DELAYED FREEZE-UP
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THE KEY FEATURES IN PHYTOPLANKTON PHENOLOGY

Phenology, the study of annually recurring life cycle events,
can provide particularly sensitive indicators of climate
change.

Wassmann & Reigstad (2011)



THE KEY FEATURES IN PHYTOPLANKTON PHENOLOGY

- Break-up and freeze-up time that determine the duration of the
open-water period

- Seasonal light cycle
- Properties of the snow-ice system
- Nutrient dynamics

- Top-down control

Wassmann & Reigstad (2011)



ONGOING CHANGES IN PHYTOPLANKTON PHENOLOGY
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EARLIER SPRING BLOOM IN THE SEASONAL ICE ZONE
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=> Due to early sea-ice break-up

Kahru et al. (2010)



ONGOING CHANGES IN PHYTOPLANKTON PHENOLOGY
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MORE INTENSE BLOOM AT HIGH LATITUDE

30 20 -10 0 10 20 30 40 50 60 70
Annual increase in primary production of
the spring bloom (mg C m2d y)

Renaut et al. (sub.)



MORE INTENSE BLOOM AT HIGH LATITUDE

=> Due to increasing
light intensity during
the bloom period
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Annual increase in PAR during the spring
bloom (mol photon m2 d- y-)

Renaut et al. (sub.)



ONGOING CHANGES IN PHYTOPLANKTON PHENOLOGY
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DECREASE PRODUCTION AT LOW LATITUDE

Inflow shelves

O

=> Due to increasing thermal stratification (and
stronger nutrient limitation?) in inflow shelves

Pabi et al. (2008), Bélanger et al. (2013), Arrigo and van Dijken (2015)



FAVORING POLEWARD SHIFT OF COCCOLITOPHORE BLOOMS

Inflow shelf: Barents Sea

Oziel et al. (2017, 2018), Neukermans et al. (2018)



FAVORING POLEWARD SHIFT OF COCCOLITOPHORE BLOOMS

2012

Particulate Inorganic Carbon

Oziel et al. (2017, 2018), Neukermans et al. (2018)



FAVORING POLEWARD SHIFT OF COCCOLITOPHORE BLOOMS

2012

Particulate Inorganic Carbon

Sea Surface Temperature

Increased intrusion of
warm Atlantic water
leads to the expansion
of coccolithophore
blooms in the Arctic

Oziel et al. (2017, 2018), Neukermans et al. (2018)
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INCREASING OCCURRENCE OF FALL BLOOMS

Ardyna et al. (2014), SWIPA (2017)



INCREASING OCCURRENCE OF FALL BLOOMS

15005

Trend in number of fall

stormy days over &

open water

=> Due to both more storms and
more sea-ice free areas

Ardyna et al. (2014), SWIPA (2017)



CHANGING ARCTIC PARADIGMS

To the “borealization” of the Arctic Ocean:

Ardyna (2013,2015), Wassmann & Reigstad (2011)



MASSIVE UNDER SEA-ICE BLOOMS: UNDETECTABLE BY SATELLITE

Melt-ponded sea ice

Phytoplankton bloom beneath
ponded-ice due to increased
light transmittance.

Under-ice bloom

The highest values reach up 30
mg Chl m= and dominated by
centric diatoms.

Arrigo et al. (2012, 2014)



MASSIVE UNDER SEA-ICE BLOOMS: PAN-ARCTIC DISTRIBUTION ?

In the Chukchi Sea
captured by Ice-Tethered Profilers.

Hill et al. (2017)



MASSIVE UNDER SEA-ICE BLOOMS: PAN-ARCTIC DISTRIBUTION ?

In the Chukchi Sea
captured by Ice-Tethered Profilers.

Hill et al. (2017)

North of Svalbard: N-ICE program
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CHANGING ARCTIC PARADIGMS

To an uncertain future for the sea-ice algae
and under-ice phytoplankton blooms

Ardyna (2015), Wasmman & Reigstad (2011)



CAP-ICE: MARIE SKLODOWSKA-CURIE FELLOWSHIP

The primary objectives are to:

(i) Determine the spatial importance of
under-ice blooms in the Arctic
Ocean.
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CAP-ICE: MARIE SKLODOWSKA-CURIE FELLOWSHIP

The primary objectives are to:

(i) Determine the spatial importance of
under-ice blooms in the Arctic
Ocean.

(i) Reveal the environmental drivers of
the initiation, magnitude and
structure

(iii) Upscale their survey and predict
their occurrence by combining
autonomous platforms and satellite




PAN-ARCTIC CONSORTIUM: EXPEDITION & SEA-ICE CAMPS

Ardyna et al. (In prep.)



DIATOM VERSUS PHAEOCYSTIS UNDER-ICE BLOOMS

Chlorophyll a (mg m-3)
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DIATOM VERSUS PHAEOCYSTIS UNDER-ICE BLOOMS
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DIATOM VERSUS PHAEOCYSTIS UNDER-ICE BLOOMS
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DIATOM VERSUS PHAEOCYSTIS UNDER-ICE BLOOMS
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Light-regime control.
o (i) Water temperature
iii) Top-down control

o iv) Other limiting nutrients (Vitamin b-12...)
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IMPLICATIONS FOR ARCTIC MARINE ECOSYSTEMS ?
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IMPLICATIONS FOR ARCTIC MARINE ECOSYSTEMS ?
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FUTURE PERSPECTIVES
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Under sea-ice Spring
bloom bloom

How are the changing “sea-ice dynamics modifying under-ice
biogeochemistry, and carbon cycle?
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Under sea-ice Spring
bloom bloom

How are the changing™=Sea-ice dynamics modifying under-ice
biogeochemistry\and carbon cycle?

How are pulses in biological activity in late and early season inter-
connected, and how might marine ecosystems react during in polar
night?



FUTURE PERSPECTIVES

Spring
bloom

How are the changing™=Sea-ice dynamics modifying under-ice
biogeochemist/yand carbon cycle?

How are pulses in biological activity in late and early season inter-
connected, and how might marine ecosystems react during in polar

night?

The polar night and under-ice environments need more attention!!!



Questions???
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