Multiple stressors in coastal ocean environments – rethinking the impact of ocean acidification

Wei-Jun Cai
Department of Marine Sciences
University of Georgia
Athens, Georgia 30602
OCB Summer Science Workshop
WHOI, July 16-19, 2012
Outline

• Introduction
• Examples of acidification and low O_2 events in coastal waters
• Responses of ocean CO_2 system to multiple stressors: based on first principles
• Possible impacts on organisms, ecosystem and biogeochemical processes
• Summary
Fig. 1. Schematic of human impacts on ocean biogeochemistry either directly via fluxes of material into the ocean (colored arrows) or indirectly via climate change and altered ocean circulation (black arrows). The gray arrows denote the interconnections among ocean biogeochemical dynamics. Note that many ocean processes are affected by multiple stressors, and the synergistic effects of human perturbations is a key area for further research.
Coastal ocean stressors—either directly or indirectly related to OA

- Temperature stress
 - Global warming; local extreme weather
- Salinity stress
 - Tidal cycle; reduced or increased freshwater input
- River end-member increase
- Nutrient stress
 - Fertilizer use (NO$_3$); sewage discharge (NH$_4$)
- (low) O$_2$ stress
- CO$_2$ (high and low) stress
- More frequent storm
- ...
Ocean acidification (in coastal waters?)

- Global ocean uptake of atm-CO$_2$ ($\Delta\text{pH} = -0.1$)
- Source water with a higher DIC/TA ratio advect onshore and mix with low S waters
- This water is further acidified by respiration
Examples of acidification and low O_2 events in coastal waters

- Major upwelling impacted waters
- Within and under eutrophic river plumes (warm waters)
- Low temp waters
- The Bering Sea and Arctic Ocean coastal waters
- Chesapeake Bay
- Baltic Sea
- Gulf of Mexico
- GOM
Acidification and low O$_2$ events in coastal waters--1.

At an eastern boundary current shelf

– dominated by upwelling of open ocean subsurface water with low temp, low [O$_2$], low pH, low Ω, and high pCO$_2$/DIC on to the shelf (Feely et al. 2008, Science)
Acidification and low O_2 events in coastal waters--2.

- In an upwelling dominated submerged estuary/bay (Puget Sound)

Feely et al. 2010, ECSS
Acidification and low O$_2$ events in coastal waters—3.

- High latitude waters
 (Eastern Bering Sea)

(Mathis et al. 2011; JGR)
4. St. Lawrence Estuary & Gulf

Mucci et al. (2011) Atm-Ocean
Acidification and low O$_2$ events in coastal waters—5.

- Eutrophication-hypoxia is not only a serious regional stressor, it is also a globally threat.

Spreading Dead Zones and Consequences for Marine Ecosystems
Robert J. Diaz, et al.
Science 321, 926 (2008);
DOI: 10.1126/science.1156401
Acidification and low O_2 events in coastal water--5.

- Gulf of Mexico hypoxic water

Cai et al. 2011
Nature Geoscience
Subsurface water pH and [O₂] relationship

Mississippi
- Apr 2006
- Jun 2006
- Sep 2006
- May 2007
- Jul 2007
- Aug 2007
- Aug 2008
- Jul 2009

hypoxic

O₂ (μmol/kg)

pHₚ
Subsurface water pH and $[O_2]$ relationship

$$\text{(CH}_2\text{O)}_{106}(\text{NH}_3)\text{H}_3\text{PO}_4 + 138 \ O_2 \rightarrow 106 \ CO_2 + 16 \ HNO_3 + H_3\text{PO}_4 + 122 \ H_2\text{O}$$

Cai et al. (2011)
How do anthropogenic CO$_2$ and CO$_2$ from respiration interact?

Enhanced ocean acidification!

Mississippi
- Apr 2006
- Jun 2006
- Sep 2006
- May 2007
- Jul 2007
- Aug 2007
- Aug 2008
- Jul 2009

Changjiang
- Jul 2007
- Jul 2008
- Aug 2009

Model (atm. CO$_2$)
- 280 ppm
- 385 ppm
- 800 ppm

How do anthropogenic CO$_2$ and CO$_2$ from respiration interact?
Respiratory CO$_2$-driven acidification is enhanced by anthropogenic CO$_2$.

Why?

Mississippi
- Apr 2006
- Jun 2006
- Sep 2006
- May 2007
- Jul 2007
- Aug 2007
- Aug 2008
- Jul 2009

Changjiang
- Jul 2007
- Jul 2008
- Aug 2009

Model (atm. CO$_2$)
- 280 ppm
- 385 ppm
- 800 ppm

OA'$_{P-I-P}$ = -0.16
OA'$_{P-F}$ = -0.27
OA$_{P-I-P}$ = -0.11
OA$_{P-F}$ = -0.27
OA = -0.40
Resp$_{P}$ = -0.47
Resp$_{P-I}$ = -0.29
Resp$_{P-F}$ = -0.34
Resp$_{P-I-P}$ = -0.34
pH$_T$ = 7.74

Respiratory CO$_2$-driven acidification is enhanced by anthropogenic CO$_2$.

Why?
Weakening of buffer capacity in CO$_2$-enriched waters

Cai et al. (2011)
Nature Geoscience
Impact on carbonate saturation state

- with the same hypoxia level, by year 2100, large areas of GOM will be driven to under-saturation with respect to aragonite!
Responses of ocean CO$_2$ system to multiple stresses: from first principles

- Salinity
- Temperature
- River-Ocean mixing
- Metabolic CO$_2$ consumption and release
- N cycle (NO$_3$ and NH$_4$)
- More frequent storm
- ...

A simple model
--examining the impact of respiration on pH, pCO_2 and Ω
under various conditions (T, S, ...)

• Initial partial pressure (pCO_2 and pO_2) is set by the atmosphere

• Alk is known
 – River end-member = 1.0 mmol/kg
 – Ocean end-member = 2.3 mmol/kg

• Bottom water is no longer in contact with the atmosphere

• Metabolic processes follows the Redfield CN ratio...

$\text{(CH}_2\text{O})_{106}\text{(NH}_3\text{)}\text{H}_3\text{PO}_4 + 138\text{O}_2 \rightarrow$

$106\text{CO}_2 + 16\text{HNO}_3 + \text{H}_3\text{PO}_4 + 122\text{H}_2\text{O}$
Effects of T & S on respiratory-driven CO$_2$ acidification (over a complete consumption of O$_2$)

- The greatest increases in [CO$_2$] (13-fold) and decreases in pH (~1.1) occur at the lowest S and T.
- At higher S & T, less increase in Rel.[CO$_2$] and decrease in pH (0.25–0.77 at S=36).
- [CO$_3^{2-}$] decreases by 12-fold (low S & T) and 1.6-fold (high T &S).

Why there is such a big difference between low ST and high ST?

(Sunda and Cai, ES&T, under review)
Effects of T & S on respiratory driven CO₂ acidification (over a complete consumption of O₂)

• Due to higher solubility of O₂ in colder and less saline waters?
 - A 2.3-fold increased in O₂ solubility increase the resp-CO₂ release
 - But the effect is small due to a higher (2.9X) initial [CO₂] & lower initial pH at lower T and S (ΔpH from 1.07 to 1.10).

(Sunda and Cai, ES&T, under review)
Effects of T & S on respiratory driven CO$_2$ acidification (over a complete consumption of O$_2$)

- The different initial [CO$_3^{2-}$] is responsible for the very different sensitivity to salinity and temp
 - Higher TA at high sal (2.4 mM vs. ~1.2 mM)
 - Mainly, a change in dissociation constants

(Sunda and Cai, ES&T, under review)
Will increasing Atm-P_{CO_2} amplify or suppress respiratory-CO_2 acidification ($\Delta p\text{H}_R$)?

- For high T & S waters (GOM), amplify
- For low T (arctic waters), at the max. point, start to suppress
- Initial $[\text{CO}_3^{2-}]$ is the key

(Sunda and Cai, ES&T, under review)
What is so magic about this point of max-Δ\text{pH}_R?

- Where the system has minimum buffering capacity
- A point where DIC = TA or $[\text{CO}_2] = [\text{CO}_3^{2-}] + \text{B(OH)}^-$

$$[\text{CO}_2] + [\text{HCO}_3^-] + [\text{CO}_3^{2-}] = [\text{HCO}_3^-] + 2[\text{CO}_3^{2-}] + \text{B(OH)}^-$$
How can a storm make bottom waters even more acidic?
Outline

• Introduction
• Examples of acidification events in coastal waters
• Responses of ocean CO$_2$ system to multiple stresses: based on first principles
• Possible impacts on organisms, ecosystem and biogeochemical processes
• Summary
Possible impacts on the marine nitrogen cycle

Hutchins et al. 2009, Oceanography
Enhanced denitrification?

\[N^* = [\text{NO}_3^-]_{\text{obs}} - 16/106^* \Delta \text{DIC} \]

Cai unpublished data

\[\text{RI} = \log(pO_2/pCO_2) \]

(Brewer & Piltzer 2009)
Summary

• Respiration often plays a more important role in acidifying coastal bottom waters today, but

• Anthropogenic CO$_2$ uptake from the atmosphere will play an increasingly important role in acidifying coastal bottom waters.

• There is a strong enhancement of acidification in CO$_2$-enriched waters, and such effects vary greatly with salinity and temperature, with a greater effect in low T and S water (decreasing) and a smaller effect in high T and S water (increasing).

• Storm on pH and N cycle...
Ocean Stress Guide

What the ocean will experience this century without urgent and substantial reduction in greenhouse gas emissions.

Stressor	Causes	Result	Direct effects	Impacts	Feedback to climate
---------------	--				
Warming	Increasing greenhouse gas emissions to the atmosphere	Temperature increase, particularly in near-surface waters	Decreased carbon dioxide solubility	Stress to organism physiology, including coral bleaching	Reduced ocean uptake of carbon dioxide due to solubility effect
		Less ocean mixing due to increased stratification	Increased speed of chemical and biological processes	Extensive migration of species	Increased oxygen consumption, carbon dioxide production and decrease in oxygen transfer to the deep ocean
		Increased run-off and sea-ice melt will also contribute to stratification in Arctic waters	Reduced natural nutrient re-supply in more stratified waters	More rapid turnover of organic matter	Potential decrease in the export of carbon to the ocean’s interior
				Nutrient stress for phytoplankton, particularly in warm waters	Decreasing productivity except in the Arctic
Acidification	Increasing atmospheric carbon dioxide emissions	Unprecedented rapid change to ocean carbonate chemistry	Reduced calcification, growth and reproduction rates in many species	Impeded shell or skeletal growth and physiological stress in many species, including juvenile stages	Reduced ocean uptake of carbon dioxide due to chemical effects
	Coastal nutrient enrichment, methane hydrates and acid gases from industrial emissions may also contribute locally	Much of the ocean will become corrosive to shellfish animals and corals, with effects starting in the Arctic by 2020	Changes to the carbon and nitrogen composition of organic material	Change to biodiversity and ecosystems, and the goods and services they provide	Changes to the export of carbon to the ocean’s interior
				Cold and upwelling waters currently supporting key fisheries and aquaculture likely to be especially vulnerable	Higher oxygen use throughout the water column due to changing composition of organic material
Deoxygenation	Reduced oxygen solubility due to warming	Less oxygen available for respiration especially in productive regions, and in the ocean interior	Reduced growth and activity of zooplankton, fish and other oxygen-using organisms	Stress to oxygen-using organisms	Enhanced production of the two greenhouse gases methane and nitrous oxide
	Decreased oxygen supply to the ocean interior due to less mixing			Risk of species loss in low oxygen areas	
	Nutrient rich land run-off stimulating oxygen removal locally			Shift to low oxygen-tolerant organisms, especially microorganisms and loss of ecosystem services in these areas	
All three together	Increasing greenhouse gas emissions, especially carbon dioxide, to the atmosphere	More frequent occurrence of waters that will not only be warmer but also have higher acidity and less oxygen content	Damage to organism physiology, energy balance, shell formation: e.g. coral reef degradation	Ocean acidification can reduce organisms’ thermal tolerance, increasing the impact of warming	Major change to ocean physics, chemistry and ecosystems
	Few studies			Combined effects further increase risk to food security and industries depending on healthy and productive marine ecosystems	Risk of multiple positive feedbacks to atmosphere, increasing the rate of future climate change