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» Subtropical gyres comprise some the largest habitats on
this planet

» Constraining carbon production and sequestration in these
regions is critical to global carbon budgets

» Time series programs afford unique opportunities to define
the magnitude and pathways of carbon fluxes in the open sea



Time, water, and change

» The complexity of ecosystem
dynamics, even in “stable”
systems, demands multi-
disciplinary, sustained
observations.

* Implementation and
leveraging of remote and
autonomous sampling
platforms at ocean time
series sites is providing new
insights into bioelemental
cycling in these ecosystems.

Photo: Paul Lethaby



The Hawaii Ocean
Time-series (HOT)

» Near monthly cruises to
Station ALOHA since October
1988

» ALOHA is a deep, open ocean
(~4800 m) site

» Shipboard and remote
(moorings, gliders, floats, and
satellites) measurements of
ocean biogeochemistry,

physics, and plankton ecology

» 4-day cruises, intensive

sampling to 1000 m




The upper ocean habitat
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* Mixed layer ~30-100 m, euphotic zone ~100-125 m
*>65% of the daily carbon fixation occurs in the
nutrient-deplete mixed layer
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Carbon fixation and particulate carbon export
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Annually
averaged
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Annually
averaged
PC15om
export:
~0.9 mol C
m-2 yr-l
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What processes control the summertime drawdown of DIC at Station ALOHA?



Spring-fall drawdown of DIC in the absence of nitrate is a
common feature of the subtropical gyres
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(Michaels et al. 1994, Bates et al. 1996, 1998, Gruber et al. 1998,
Lee et al. 2000, Karl et al. 2003, etc.)



Biological and physical processes controlling
variability in carbon inventories and fluxes
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Quantifying net community
asroduction in the open sea is difficult

<pp. GPP - R = NCP

32-42 mol C m2 yr? Station ALOHA
NCP : GPP =




Measurements of net community production at
Station ALOHA

Mixed layer DIC and 3C/2C

Seasonal evolution of dissolved
oxygen, O,:inert gas ratios, and
oxygen isotopes

Nitrogen-based determinations of
new production; over annual scales

~ NCP

Vertical transport of organic matter
export (POC, DOC, and migrant
flux)




Estimates of NCP at ALOHA abound...

Deep-Sea Research I, Vol. 43, No. 2-3, pp. 539-568, 1996
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Estimates of net community production at ALOHA

Method of

Determination

Rate
(£ stdev)
mol C m2 yr?

Period

References

O, based Mixed Layer 1.4 - 3.7 (£ 1.0) 1992—2008  Emerson et al. (1997); Hamme
approaches O.: Ar and Emerson (2006); Juranek
2 and Quay (2005); Quay et al.
(2010)
Mooring O, 4.1 (£ 1.8) 2005 Emerson et al. (2008)
Sub-mixed layer float 1.1-1.7 (£0.2) 2003-2010 Riser and Johnson (2008)
profiles
Sub-mixed layer glider 0.9 (£ 0.1) 2005 Nicholson et al. (2008)
surveys
C-based Mixed layer 3C/2C and 1.6 £ 0.9 1990-1995 Emerson et al. (1997)
approaches DIC dynamics 2.7 + 1.4 1994-1999 Quay and Stutsman (2003)
2.8 + 0.8 1988-2002 Keeling et al. (2004)
Passive and Sediment traps 0.9 (£ 0.3) 1988-2012 HOT core data
active OM fluxes (150 m)
234Th deficits 1.5 (+ 0.8) 1999-2000 Benitez-Nelson et al. (2001)
DOC export 0.4 2002-2012 HOT core data
Zooplankton-mediated 0.1 (£ 0.09) 1994-2005  Al-Mutairi and Landry (2001)

Hannides et al. (2009)

NCP ranges 1.1-4.1 mol C m2 yr, averaging ~2 mol C m2 yr
Many of these estimates have uncertainties of ~30-60%




The devil is in the details...

Diagnostic models depend on accuracy of :

» Air-sea flux (£30%) - limited by gas exchange
parameterization

» Lateral transport (£50-70%) — limited by horizontal
velocities

» Vertical entrainment/diffusion (£50%) - poor constraint

on K,

Some estimates based on mixed layer dynamics (i.e. O,: Ar
or 3C/'2C) while others based on sub-mixed layer (seasonal
evolution of O,)

O, based approaches require appropriate PQ and RQ
Sediment trap biases

Particles and DOC

Nutrient sources supporting NCP



Where do nutrients come N, fixation
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nature Vol 465124 June 2010/ doi:10.1038/nature09170

LETTERS

Nitrate supply from deep to near-surface waters of
the North Pacific subtropical gyre

Kenneth S. Johnson', Stephen C. Riser* & David M. Karl®

Nitrate [uM]

B |
£ 150 ﬁ\& i
O
(3]
O

200 | 'II" Hﬁﬁ“'ﬁ. \ ﬁ.. .M NV'L JMW%NNMLM}&T

I WA WWMW W

2008 2009 2010 2011 2012 2013
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Annual N supply: >88 mmol N m2 yr* (0.6 mol C m2yr1)

Courtesy of Ken Johnson, MBARI Chemical Sensor Lab
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Vertical transport of nutrients by physical
processes introduces C-enriched waters
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Biological N supply to the ocean: N, fixation

* N, fixation estimated to fuel ~50% of particulate export in the
subtropical N. Pacific

* Numerous taxa of N, fixing microorganisms

* N, fixation supported diatom-driven export estimated to
contribute ~35% of the annual C-flux to the deep sea
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'. PLOS O NE  september 2010 | Volume 5 | Issue 9 | e12583
Methodological Underestimation of Oceanic Nitrogen
Fixation Rates

L ]
The trouble with | . |
Wiebke Mohr*, Tobias GroBBkopf, Douglas W. R. Wallace, Julie LaRoche
the bubble ANGELICQUE E. WHITE only 40% of the maximum rate measured in the incubations to

which ”Ny-enriched seawater had been added. In other words, for
the 12-h incubation period under the described experimental
conditions, the No fixation rate was underestimated by 60% when
S the "N, was introduced as a gas bubble. In contrast, in both the

1isotopic equilibration and the culture experiments, the concentra-
tion of dissolved '°Ny remained stable at the predicted value

290 | NATURE | VOL 488 | 16 AUGUST 2012

Trichodesmium colony

1,
_m throughout the 24 h in incubations to which °Ny-enriched water
e was added.
A 0 16 AUGUST 2012 | VOL 488 | NATURE | 361
EEt Doubling of marine dinitrogen-fixation rates based
ogm . ° on direct measurements

= Tobias GrofSkopf'*, Wiebke Mohr'*+, Tina Baustian', Harald Schunck!, Diana Gill', Marcel M. M. Kuypers?, Gaute Lavik?,
Ruth A. Schmitz®, Douglas W. R. Wallace* & Julie LaRoche't

Our data show that in areas dominated by Trichodesmium, the

established method underestimates N,-fixation rates by an average

of 62%. We also find that the newly developed method yields

N,-fixation rates more than six times higher than those from the

Appliad and Environmental Microbiology p. 6516-6523 September 2012 Volume 7E Mumber 18 established met.hOd wlfen unlce]lu.lar, Symbl.()tlc CYanOb.aCterla and

. - L . y-proteobacteria dominate the diazotrophic community. On the
Comparative Assessment of Nitrogen Fixation Methodologies,

Conducted in the Oligotrophic North Pacific Ocean

samueal T. Wilson,*® Danlela Battler,*® Matthew J. Church,>® and David M. Kar™®

production were measurable for nonconcentrated seawater samples after an incubation period of 3 to 4 h. The *°N, tracer mea-
surements compared the addition of "°N, as a gas bubble and dissolved as "N, enriched seawater. On all sampling occasions and
atall depths, a 2- to 6-fold increase in the rate of "°N, assimilation was measured when "N, -enriched seawater was added to the
seawater sample compared to the addition of "N, as a gas bubble. In addition, we show that the "N, -enriched seawater can be
prepared prior to its use with no detectable loss (<1.7%) of dissolved °N, during 4 weeks of storage, facilitating its use in the




Annual climatology of N, fixation at Station ALOHA
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- Annual (2005-2012) average N, fixation (bubble):

48 mmol N m2 yr* (0.3 mol C m2yr1?)

Annual (2012-2013) average N, fixation (no-bubble):

143 mmol N m2 yr* (0.9 mol C m2 yr?)



Summary

 NCP at ALOHA averages ~2 mol C m yr, with an
uncertainty of ~+50%.

* Uncertainties in NCP derive from poor constraint on
both physical (lateral advection, vertical entrainment,
air-sea exchange) and biological processes (DOC flux,
sediment traps, vertical migrators).

» The processes supplying nutrients supporting NCP
remain unclear.

» Time series programs (augmented by autonomous
technologies) continue to improve our ability to
constrain the magnitude and variability in carbon fluxes
in the open sea.
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Station ALOHA is one of the few places on Earth where time series
measurements enable mass balance constraint on ocean NCP

Co,
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Y

Carbon Burial

1% light level

»How temporally
variable are rates of
production and
export in the central
North Pacific?

»>»What processes
control this
variability?

>What is the fate of
biologically fixed
carbon?



Interannual to subdecadal scale variability
in mixing and mixed layer DIC
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What role do biological and physical processes play in
controlling the magnitude and variability in seasonal- to
decadal-scale ocean carbon fluxes?




Annual cycle of productivity and export
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Plankton community structure plays a key role in controlling carbon export




Climate modulated
changes in the
NPSG ecosystem

Interannual to
subdecadal variability in
upper ocean mixing
appears linked to basin-
scale climate
fluctuations.

Changes in nutrient and
light availability alters
biological productivity
and biomass.
Variability in inorganic
carbon inventories,
ocean pH, and air-sea
CO, flux appear
correlated to variations
in salinity.
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14C—[irimary production provides a
highly sensitive means of quantifying
daily rates of carbon fixation.

Requires confinement of samples

DO“4C? At ALOHA ~20-30% of particulate
carbon fixation

Daytime only or 24 hours? ~20-30% loss
overnight

*4C-primary production # gross primary
production

4C-primary production # net
community production

Depending on how the method is
employed, 4C-primary production = net
primary production?



