NACP/OCB Interim Coastal Carbon Update

Synthesis

OCB Meeting 2011

Simone Alin, Heather Benway, Wei-Jun Cai, Paula Coble, Marjy Friedrichs, Peter Griffith, Steve Lohrenz, Jeremy Mathis, Galen McKinley, Raymond Najjar

Special thanks to Paula Bontempi and Don Rice

North American Carbon Program

Coastal Synthesis - Regions

- Five regional preliminary budgets
 - East Coast and Gulf of Maine
 - Gulf of Mexico
 - Great Lakes
 - West Coast
 - Arctic

http://www.nacarbon.org/nacp/

Jeremy – jmathis@sfos.uaf.edu Simone - Simone.R.Alin@noaa.gov Galen - gamckinley@wisc.edu Wei-Jun - wcai@uga.edu Paula - coble@marine.usf.edu

Fluxes of Interest

Interfacial fluxes:

- Inputs from land of DOC, POC, and DIC
- Air-sea: Exchange of CO₂, rainwater DOC
- Sedimentary fluxes: POC deposition, DOC & DIC exchange, benthic productivity, groundwater, hydrocarbon seeps
- Shelf-break exchange: DIC, DOC, POC

Internal fluxes:

- Primary production
- Respiration
- Net community production

Synthesis Timeline

- Initiated at July 2008 OCB Meeting
- Presentations given in special sessions at the 2009 and 2010 OCB Meeting.
- 2-Day Workshop held before 2010 AGU Meeting
 - At the meeting there were two sets of breakout groups
 - Process and Regional
 - Process Groups: River-Estuary Fluxes, Cross-Shelf Exchange, Sediment Burial, Primary Productivity and Respiration, and Air-Sea Exchange

Synthesis Timeline

Each breakout group had a set of questions:

Process

- What are the processes involved (e.g., river discharge, sediment bed load transport, tidal influence, estuarine recycling, etc.) in river-estuary fluxes?
 - Can individual measurements for cross-shelf exchange be scaled up spatially and temporally and how well is the process or subprocess parameterized (for models)?
 - What are the processes involved in sediment burial (e.g., bioturbation, erosion, resuspension, etc.)?

Region

- What data sets are readily available and what is the quality?
- What projects are coming on-line that will provide important data in the near future?
- What kinds of numerical models exist (Box vs. 1D vs. 3D) and what processes do they include?

Synthesis Timeline

- It was decided in San Francisco that we need regionally focused working group (<10 people) and that some regions (East Coast and West Coast) should be further divided.
- We also decided that we need help with data organization.
 Peter Griffith (peter.c.griffith@nasa.gov) will be advertising soon
 - for a postdoc/data technician position for his group that will support the coastal carbon synthesis.
- Another full meeting will be held in conjunction with OCB 2012.

Carbon budget for the continental shelf of the Eastern United States

R. Najjar, D. Butman, W.-J. Cai, M. Friedrichs, A. Mannino, P. Raymond, J. Salisbury, and D. Vandemark

+

B. Boyer, K. Fennel, J. Fuentes, M. Kemp, K. Kroeger, R. Striegl, and P. Vlahos

2010 Ocean Sciences Meeting February 26, 2010

East Coast Activities Shelf-Wide Budget (Tg C yr⁻¹)

East Coast Activities

Estuarine and Coastal Ocean Carbon Paradox: CO₂ Sinks or Sites of Terrestrial Carbon Incineration?

Wei-Jun Cai

Department of Marine Sciences, University of Georgia, Athens, Georgia 30602; email: wcai@uga.edu

U.S. East Coast Carbon Synthesis Workshop

Organizers: Ray Najjar, Marjy Friedrichs, Wei-Jun Cai

Tentative Dates: 19-20 January 2012

Tentative Location: Virginia Institute of Marine Science

Gloucester Point VA

Objectives

Quantification of carbon budget processes in each of the three subregions, including:

Primary productivity

Respiration

Air-sea CO₂ flux

Burial

River inputs

Off-shelf fluxes

If interested in participating, please contact:
Ray Najjar (najjar@meteo.psu.edu)
Marjy Friedrichs (marjy@vims.edu)
Wei-Jun Cai (wcai@uga.edu)

U.S. West Coast Carbon Synthesis Workshop

Organizers: Simone Alin and Burke Hales

- Sub-regions (north, central, south) meet separately by telecon and have 1physical meeting with most involved members of each group.
 - First telecons scheduled (July 28th at noon and August 2nd at 2 pm)
 - Contact Simone (Simone.R.Alin@noaa.gov) or Burke (bhales@coas.oregonstate.edu) if interested in joining
 - ~10 people/region
 - Meeting will be held later in the year likely in Seattle.

West Coast Activities

New Observations

Surface buoy with MAP CO₂ System, SAMI pH, ISUS nitrate, and SBE 16+

Bering 5ea ALASKA (U.S.)

Pacific Ocean

CANADA

Bottom package with SAMI pH and pCO₂, ISUS nitrate, and SBE 16+

West Coast Activities

xCO₂ in Air and Seawater @ GAKOA (149W,60N) (Date: 2011-06-15 to 2011-07-15)

 ΔpCO_2 and Percentage Saturation of Oxygen @ GAKOA (149W,60N) (Date: 2011–06–15 to 2011–07–15)

First full dataset in May 2012

http://pmel.noaa.gov/co2/story/GAKOA

West Coast Field Activities

California Cooperative Oceanic Fisheries Investigations (CalCOFI)

GOA-IERP program

A Preliminary Carbon Budget for the Gulf of Mexico

Paula G Coble, Lisa L Robbins, Kendra L Daly, Wei-Jun Cai, Katja Fennel, Steven E Lohrenz 2010 Ocean Sciences Portland, OR Feb. 26,2010

GulfCarbon: A Comprehensive Study of Carbon Dynamics in the Northern Gulf of Mexico

Steven E. Lohrenz, Wei-Jun Cai, Kevin Martin, Sumit Chakraborty, Sarah Epps, Kjell Gundersen, Wei-Jen Huang, Yongchen Wang

GOM Activities Shelf-wide budget (10¹² g C yr⁻¹)

GOM Carbon Synthesis Workshop

Organizers: Coble, Lohrenz, Daly, Robbins, and Cai

- Initial planning for regional workshop is underway.
- Telecons will start soon with a workshop in October or November 2011.
- Contact Paula (coble@marine.usf.edu) for more information.

<u>Preliminary Carbon Budgets for the Laurentian Great Lakes</u>

By Galen McKinley, Noel Urban, Val Bennington, Darren Pilcher, Cory McDonald OCB Newsletter, Vol.4, no. 2 (spring/summer 2011)

Account for internal processes, input, outputs:

FLUX = 2.3 TgC/yr (source)

McKinley et al. 2011; Urban et al. (in prep)

Carbon inputs and outputs only:

FLUX = 0.12 TgC/yr (source)

Great Lakes Carbon Budget: Simple, 2-Box Models

GREAT LAKES CARBON BUDGET SUMMARY:

- CO_2 source = 0.1 10's TgC/yr
- Key unknowns
 - NPP and R mean values, spatial distribution
 - Surface pCO₂ temporal evolution
- Winter observations, satellite algorithms critically needed

McKinley et al. 2011, Atilla et al. 2011

Table 1. Summary of Great Lake characteristics. Relative magnitude with respect to Lake Erie in parentheses.

Lake	Surface Area (m²)	Hydrologic Residence Time (yr)	Mean depth (m)	Max. depth (m)
Superior	8.21x10 ¹⁰ (3.2)	174 (67)	150 (7.7)	406 (6.3)
Michigan	5.78x10 ¹⁰ (2.2)	104 (40)	85 (4.5)	282 (4.4)
Huron	5.96x10 ¹⁰ (2.3)	21 (8.2)	59 (3.1)	229 (3.6)
Erie	2.57x10 ¹⁰ (1.0)	26 (1.0)	19 (1.0)	64 (1.0)
Ontario	1.90x10 ¹⁰ (0.7)	7.3 (2.8)	86 (4.5)	244 (3.8)

Bering Sea Activities

- Surface buoy with MAP CO₂ System, SAMI pH, ISUS nitrate, and SBE 16+.
- Bottom package with SAMI pH and pCO₂, ISUS nitrate, and SBE 16+

Mathis et al., 2010, Biogeosciences, 7, 1769–1787

Bering Sea Activities

Air-sea CO2 fluxes on the Bering Sea shelf

N. R. Bates¹, J. T. Mathis², and M. A. Jeffries³ Biogeosciences, 8, 1237–1253, 2011

Arctic Activities

In 2010 - 2011, over 3,000 samples were collected from Bering Strait to the Beaufort Sea for:

- DIC
- TA (*p*CO₂)
- TOC

Export Production = Δ nDIC – Δ DOC - Δ suspended POC

- ∆ values in µmol kg⁻¹
- (%) is the amount of ΔDIC converted

	160°E	180°	160°W	140°W Canada Basin	120°W	
70°N		Chukch Sea			Beaufort Sea	Mackenzie
Kolymo		VE ssia	South Park	North Slope Slovi Colville Colville	Yukon IGLACIAL C SOURCES	
60°N		۲.	1		Copper	SE AK Ska Stream
	Bering	Sea 2			*	Gulf of Alaska errestrial Synthesis Zones High POC Fluxes, Glacially- Modulated Carbon, Nutrients
50°N	we we	Albert Self	A. S. C.		2 Berin	High POC Fluxes ("old" C), semi- Labile DOC, Low Alkalinity Moderate POC Fluxes, Labile DOC,
	A. C.	C RVA	75.5	4	Arctic	Low Alkalinity

Location	Δ nDIC	ΔDOC	∆suspended POC	Export Prod. (mmol C m ⁻² d ⁻¹)*
Central				
Shelf	230	22 (9%)	40 (17%)	104 (74%)
Slope	41	4 (10%)	7 (17%)	15 (73%)
Basin	2	0	0.3 (15%)	0.5 (85%)
Western				
Shelf	86	9 (10%)	14 (16%)	32.5 (74%)
Slope	22	2.5 (11%) 3 (14%)	8 (75%)
Basin	3	0	0.5 (15%)	1.3 (85%)
Eastern				
Shelf	94	11 (12%) 16 (17%)	40 (71%)
Slope	58	6 (10%	8 (14%)	23 (76%)
Basin	11	0.8 (7%	1.8 (16%)	3.7 (77%)

^{*} The export production values are consistent with observations taken from sediment traps.

Mathis et al., 2007b

Mathis, Bates, Frey, Juranek, and VanLaningham have a pending OPP proposal to develop seasonal carbon budgets for the region.

Summary

- Progress is being made in each of the five regions
 - West Coast telecons will begin next week
 - Meetings for East Coast and GOM will occur later in the year
 - Great Lakes and Bering Sea/Arctic will be developed opportunistically as funding allows
- Please contact one of the regional leaders if you are interested in participating or have data/model outputs to contribute.
- Advertisement for data technician will be out soon.