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Melt of the Arctic Ocean Sea Ice

2008 Annual Minimum - Image courtesy NASA Goddard SVS




Principle 1: Show comparisons

1980 Annual Minimum N Image courtesy NASA Goddard SVS
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Arctic Ocean margin CO, uptake increases
greatly over recent years
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A sea ice free summer Arctic within 30 years?

Muyin Wang' and James E. Overland®
GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L07502, doi:10.1029/2009GL037820. 2009
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Major ice melt and PP in 2007, Arrigo, GRL 2008
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Prewous CO, survey (margins)
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Previous CO, survey (basins)
Bering Strait
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Prediction and problems

e |tis predicted that melt of sea ice in the Arctic
Ocean basins will allow for a large extra
uptake of the atmospheric CO,.



Prediction and problems

e |tis predicted that melt of sea ice in the Arctic
Ocean basins will allow for a large extra
uptake of the atmospheric CO,.

— However, this prediction was made based on
observations from either highly productive ocean
margins or ice-covered basins prior to the recent
major ice retreat .

— It is also important to understand how various
factors may control sea surface pCO, variability in
the Arctic Ocean, which we don’t have yet.
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Circulation of the western Arctic Ocean
(marginal Seas)
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Circulation of the western Arctic Ocean

Cenenc Shelf Types
Carmack and Wasaman [2006]




outline

Introduction of the problem

Background

Results from the summer 2008 CHINARE
Controls on the Arctic basin sea surface pCO,

Arctic C cycling under a rapidly changing
climate



CHINARE cruise track and major ice melt in
the Canada Basin in summer 2008
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Cruise track (left) and Ice concentration map (right), 1t week of Sept.
2008, superimposed with Blue line: Aug.12, 2008; Gold line: Sept.

1994 and Red line: Sept. 1999.



Substantial sea ice melt in the western Arctic Ocean basin,
/144 otember 1, 2008

Credit: Dr. Zhongyong Gao, State Ocean Administration of China—Third Institute of Oceanography, Xiamen, China.



2008

1994 & 1999

Underway data compared to earlier data

Ocean Data View
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Evidence of biological CO, fixation
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Evidence of biological CO, fixation
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Primary production rates in summer 2008

Primary production measured in summer 2008 (mg/mzlday)
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Temp @ Depth [m]=Top

T, S, Ice, and pCO,

Sea ice[%] @ Depth [m]=Top
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Controls on the Arctic basin sea surface
pCO,

e Controls:
— Biology
— Temperature
— River Water
— lce Meltwater

e How do we separate them?

 What conservative tracers can we use to
separate River from lIce meltwaters?



What controls surface water pCO, distribution?
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TA is conservative to Salinity though
not necessarily in one straight line

TA and DIC (mmol/kg)
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Salinity and O'® were used as conservative
tracers to separate the contributions of
seawater, river and ice end-members
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Salinity and O'® were used as conservative
tracers to separate the contributions of
seawater, river and ice end-members
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ALK is a conservative tracer that has
distinct values for
all three end-members
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ALK is a conservative tracer that has
distinct values for
all three end-members
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Relative contribution of river vs. ice
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Year 1820

Ocean
acidification

OA is most
significant
in the
Arctic
Ocean

Steinacher
et al. GB

2009




Aragonite Undersaturation in the Arctic Ocean:
Effects of Ocean Acidification and Sea Ice Melt
Michiyo Yamamoto-Kawai, et al.

Science 326, 1098 (2009);

AVAAAS DOI: 10.1126/science.1174190
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Fig. 1. (A) Surface distributions of £ aragonite, S, fraction of sea ice meltwater (f SIM), and TA in surface water observed
between depths of 0 and 20 m. f SIM was estimated by using **0 and S measurements (12, 13). Gray contour lines indicate
isobaths of 1000, 2000, and 3000 m. (B) Relationship between €2 aragonite and f SIM in surface water observed in 1997 300
(red) and 2008 (blue). (C) Mean vertical profile of €2 aragonite in the upper 300 m of the Canada Basin in 1997 (thick red line)

(14) and in 2008 (thick blue line). Observations at stations where the bottom depth was >2000 m were used to calculate mean and SD (error bars) at each depth
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What controls surface pCO, distribution?
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Biogeosciences, 6, 1-27, 2009 -'\ ] ]
www.biogeosciences.net/6/1/2009/ ‘Gg’ Bi ogeosciences
© Author(s) 2009. This work is distributed under B

the Creative Commons Attribution 3.0 License.

The Arctic Ocean marine carbon cycle: evaluation of air-sea CO»
exchanges, ocean acidification impacts and potential feedbacks

N.R. Bales! and J. T. Mathis

IBermuda Institute of Ocean Sciences, Ferry Reach, Bermuda
2School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA



Circulation of the western Arctic Ocean

Cenenc Shelf Types
Carmack and Wasaman [2006]




e the net role of increased stratification versus

sustained wind mixing in these newly ice free
regions

e Wind-driven upwelling and mixing of nutrient
and CO2 rich subsurface water is expected or
already has been shown to have a major
impact on carbon dynamics and ecosystem in
the Arctic or Antarctic marginal areas.



In addition, warmer temperatures likely would enhance
microbial respiration of organic carbon, potentially reducing
net community production.

Moreover, increased warming also would promote permafrost
thawing and coastal erosion in the Arctic continents,
increasing riverine inputs of organic carbon that is
subsequently metabolized to CO2, thus further contributing to
the elevated pCO2.

In future years, when sea surface temperature further
increases after all ice is melted during summertime, as is
predicted to

occur within 30 years, the Arctic Ocean basin CO2 uptake
capacity would reduce further because of the warming effect
on surface-water pCO2.
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Summary

Arctic Ocean margins and basins are experiencing rapid
changes.

Carbon cycle, in particular, CO, behavior, also
experiences rapid changes.

Margins are large CO, sinks, but basins are not.

Rapid CO, invasion from the atmosphere into the
highly stratified and shallow surface water (caused by
ice melt, warming) is the main reason for the limited
CO, uptake capacity.

Surface water is being acidified by this CO, invasion.

Future warming may further reduce this CO, uptake
capacity.



Measuring Surface Water pCO, in the Polar Oceans:
Outfitting and Initial Operation of a pCO, System on the Chinese
Icebreaker Xue Long

Partners:

»Prof. Ligi Chen of the Third Institute of Oceanography, SOA, in Xiamen, PRC.
»Dr. Rik Wanninkhof of AOML/NOAA in Miami FI, USA;

»Prof. Wei-Jun Cai of the University of Georgia, Athens, GA, USA

> In collaboration with the Polar Research Institute of China (PRIC), Shanghai PRC.

NOAA support: Office of oceanic and atmospheric research (OAR), Climate program office, Polar
Programs, Global Carbon Cycle Program

Duration: 1 February 2005 - 31 January 2008 (no cost extension to April 2009

Objectives: oy
»Train scientists from PRC in modern methods of CO, analysis "Eﬁﬂﬁﬁw
» Scientific Exchanges Install underway pCO, system on Xue Long B i, Vit 0k

» Training of Personnel in operation of system
» Interpretation of results of Cruises to Artic and Antarctic

Future:
»Joint SINO-US Scientific efforts on Chinese Polar Cruises

First meeting of partners, Xiamen, July 2006



Setup of Automated pCO, System on Xue Long, Shanghai 2007
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undergoing major Renovations
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A week later: Installation complete



Icebreaker Xue Long at the Ice Station near 85°N in
the western Arctic Ocean
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Credit: Mr. Yong Wang, State Ocean Administration of China -the Chinese Arctic and Antarctic Administration, Beijing, China.
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