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Time-series observations have been a core strategy in
oceanography for >50 years

The Continous Plankton Recorder (CPR) Survey f‘ .
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Biogeochemical oceanographic time series & long-
term ecological research sites (LTERS)
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 Ecological responses to climate variability
» Biogeochemistry and the biological pump

» Informing models with observations



Ecological responses to climate variability

+ Climate modes
- Regime change
- Anthropogenic warming
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Decrease in pelagic tunicates (salps) in the California Current

(gelatinous zooplankton have a low
C: biovolume ratio)
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Multiple time-scales of change affect species composition

SOUTHERN CALIFORNIA
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Evidence of regime change
Primary production North Pacific Subtropical Gyre
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1977 PDO shift
intensification of the Aleutian Low, increased westerly winds, deepening of the main
thermocline, nutrient flux into the euphotic zone




Anthropogenic warming

Species shifts in planktonic foraminifera in sediments off S. California
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southern pseudo-oceanic

North Atlantic copepods e —
& warming

1960-1975

- Change in the biogeography of m s
calanoid copepod species in N.Atlantic o re—g
over period 1960-1999

* Northward extension of more than 10°
latitude of warm water species,
associated with decrease in cold water
species.

1984-1987 1984-1987

<

7988-1991 7988.1991

* Related to increasing trend in N.
Hemisphere temp. and the NAO

1992-1995
[ e !

1996-1999 1996-1999
O 0B Ble 05 10

(Beaug rand et al ) 2002) Mean number of species per association




Warming in the Southern Ocean- Palmer Station LTER

Average winter (June-Aug.) temperature
+1.1°C per decade: 6°C since 1950: 5 x global ave.

British Antarctic Survey
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Sea ice is declining
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Penguin populations near Palmer Station
Adélies declining, other species

invading & increasing
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Biodiversity is increasing in response

to climate warming

Bill Fraser, Ducklow et al. 2007



Biogeochemistry & the biological pump

* Increase in DIC in surface ocean

* Nutrient limitation of primary production & Redfield stoichiometry
- Particle flux to the deep ocean

« Other components of the biological pump

The Biological Pump
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Long-term increase in surface-ocean dissolved inorganic
carbon (DIC) at BATS and HOT

BATS:

Increasing at a rate in
equilibrium with
anthropogenic CO,
increase in atmosphere

Atmospheric CO,

Monthly Carbon Dioxide Concentration
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390

380
370
360
350
340
330
320
310

D R e e ]
1960 1970 1980 1990 2000 2010

D. Keeling

HOT:

Increasing at a rate
slightly higher than
expected oceanic
equilibrium with
anthropogenic CO, in
Consequence: atmosphere

increasing ocean acidity
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(courtesy of N. Bates, D. Karl; updated from Karl et al. 2001, Lomas et al. 2002)



Nutrient limitation of PP & Redfield stoichiometry

N. Pacific subtropical gyre

monthly
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Episodic nutrient supply and mesoscale eddies

Mesoscale eddies near BATS
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Understanding of mesoscale heterogeneity is key for Interpretation
of time-series data, and visa versa. McGillicuddy et al. (2007)
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Eddy nutrient injection leads to increase in primary production,
phytoplankton and zooplankton biomass at BATS (and HOT), and

fecal pellet flux (BATS) compared to long-term records
Mesozooplankton biomass in eddies vs. BATS
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Deep-ocean sediment trap flux in the Sargasso Sea

Oceanic Flux Program
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Other components of the biological pump

Physical mixing of DOC

Zooplankton vertical migration
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Increase in epipelagic mesozooplankton biomass at BATS and HOT

3-pt. running
average
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Increase in active transport by diel vertical migrators at BATS
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Vertical export of DOC via seasonal advective overturn
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Informing models with observations

« The synergy of time-series and models
- Simulating upper ocean physics
- Food-web and Biogeochemical complexity




The synergy of time-series and models

- Time-series are attractive- provide additional information
on how system responds in time to perturbations (storms
and dust deposition to seasonal cycle, ENSO, decadal
variability, climate change)

Biological modeling studies are inherently data limited.
Observations are needed to test model parameterizations
(e.g., for photosynthesis, grazing , respiration) and
evaluate model skill.

Model-data interaction is two-way, an integrated
modeling component augments field programs.
Simulations can help fill in data gaps.



Improved ocean physics

Seasonal & interannual variability in temperature & mixed layer depth at BATS
SST AVHRR, KPP run 6170 04 and BATS
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The ocean is a turbulent, moving fluid.
Realistic physics required for detailed model-data comparisons, climate variability and climate change studies.

Doney 1996, Glover et al. 2002, updated



Food-web and biogeochemical complexity

The wealth of new time-series data demonstrated many flaws in model formulations
(this is good!); in response ecosystem models have evolved in complexity.
NEMURO model (Kishi et al., 2004) ¢rosatory
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Factors limiting phytoplankton growth

Global three-dimensional marine
ecosystem model with:

 Several phytoplankton
Nitrogen 55.73%, Iron 27.67%, Silica 12.54%, Phosphorus 1.405%

functional groups Light 2.645%, Replete 0.000%
 Multiple limiting nutrients ENitrogen Miron MPhosphorus = Silicon

. EXplICIt iron CyCIing BLight y Temperoturfe . ;::.Replete
. i B) Small Phytoplankton Growth Limitation

- Mineral ballast/organic matter

parameterization

Run with a global ocean

circulation model

Nitrogen 55.88%, Iron 36.34%, Phosphorus 1.426%
Light 3.788, Replete 2.556%

C) Diozotroph Growth Limitation

'

Nitrogen 0.000%, Iron 44,06%, Phosphorus 11.66%
Light 7.072%, Temperature 36.81%, Replete 0.376% Moore et al. 2004




Cost function (model-data misfit) of single- and muilii-
phytoplankton functional groups

Cross validation experiment- data assimilated from one site, and optimal parameters used to
generate simulation for the other site.
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Models with multiple functional groups are more portable across
marine biomes

Friedrichs et al. 2007



Conclusions

« Ocean time series have helped us build a better picture of

lower-frequency ocean variability, the climate processes
driving it, and its implications for food web dynamics,
biogeochemical cycling, and C storage.

- Time series enlarge our understanding of ecological

processes and are integral for improving models of physical-
biogeochemical-ecological ocean dynamics.



Future iIssues

 How to enhance and maintain existing efforts and
initiate new observation programs in critical, under-
sampled ocean regions?

* To improve understanding of how ocean ecosystems
will change in response to anthropogenic impacts,
we need to better quantify high-frequency time and
space variability around time-series sites, using
autonomous moorings, gliders, and in-situ sensors

* We must develop integrated observing systems
combining field data, satellite remote sensing, and
data assimilation.



Thank you!

Especially to the dedicated multitude that forms the backbone of
long-term oceanographic time series.
(Thank a time-series technician next time you talk to one!)

And, the funding agencies that support them.
Marjy Friedrichs, Craig Carlson, Dave Karl, Mark Ohman, Anthony

Richardson, Gregory Beaugrand, and others who provided slides,
help.



