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Societal relevant questions:Societal relevant questions

1) it i  f i  t  h lth  1) monitoring of oceanic ecosystems health  
(e.g. changes on interannual and future timescales,

timing of blooms, effects on fisheries)g , )
2) monitoring of ocean carbon cycle 

(e.g. greenhouse gas emissions verification)

W  ill d b th b ti  d d l  t  We will need both observations and models to 
address these questions



MODELS  DATA

- end users: data used for
initialization, verification,
context

- synthesis: model and data used            y
together

- feedback: model helps inform on
observing system design



Observations: limited in time and space, and have errors

Models: deficient in representation of processes

Model-data synthesis can combine best of bothy

Movie credit: Oliver Jahn, MIT



MODEL-DATA SYNTHESIS

Assimilation methods:

Some lessons learned from biogeochemical data 
assimilation:

Some lessons learned from physical data 
assimilation:
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least square fit of model to observations: 
J=iWi

2(modeli‐datai)2
J - cost function
Wi - weighting function (error estimates)



Assimilation:  Sequential Method
state data

filtered 
estimate

unconstrained 
model

time
t1 t2 t3

(e.g. Kalman Filter)



Assimilation:  Smoother Method
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(e.g. Adjoint)



State Estimation:  Adjoint MethodState Estimation:  Adjoint Method
• essentially the “backward” model
• efficiently computes sensitivity of model (cost function) to    
perturbations in parameters/initial conditions/forcing fieldsp p g

J=iWi
2(modeli-datai)2J model state 1J

Use adjoint to find 
gradient dJ/dx to 

model state 1

model state 2

x can be:

g
iteratively minimize Jmodel state 3

x

x can be:
- initial conditions
- forcing fields
- model parameters

x3 x2 x1
p



MODEL-DATA SYNTHESIS

Assimilation methods:

Some lessons learned from biogeochemical data 
assimilation:assimilation:

Some lessons learned from physical data 
assimilation:



Daily assimilation of SeaWiFSDaily assimilation of SeaWiFS
data using sequential method:
-Improvement in bias (4x) and uncertainty
(6x) of Chl relative to free run, 

  

( )
-but much smaller improvement in non
assimilated model fields 

Gregg, JMS, 2008
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Movie credit: Oliver Jahn, MIT



Adjoint assimilation of Chl, DIN, PP, export, 
zooplankton biomass at Arabian Sea Site:p

• Only subset of uncorrelated parameters could be optimized.

• Change in physics had greater affect than changes in model complexity: good • Change in physics had greater affect than changes in model complexity: good 
physics essential before optimizing

Pre-assimilated 
ChlChl

Assimilated Chl

Friedrichs et al, DSRII, 2006



Assimilation of Chl, PON, DIN, O2 from 
Lagrangian float using variational technique

• phytoplankton-related parameters constrained better than previous 
optimization modelsoptimization models

• Autonomous daily profiles provide better constraint to models, but 
even this data can only constrain a subset of parameters (12 of 25)y p

• Data not able to constrain deep carbon export

Bagniewski et al, BG, 2011



MODEL-DATA SYNTHESIS

Assimilation methods:

Some lessons learned from biogeochemical data 
assimilation:assimilation:

S  l  l d f  h i l d t  Some lessons learned from physical data 
assimilation:



ECCO-GODAE: global (multi-)decadal adjoint produced 
dynamically consistent state estimates for climate research

MITgcm
1o x 1o 23 levels
adjoint.

1992-present

W h H b h  Ph D  2007  Wunsch +Heimbach, Physica D, 2007; 
Wunsch et al., Oceanography, 2009

Slide courtesy of Patrick Heimbach



Data withholding experiments from ECMWF operational forecast analysis 
(sequential assimilation):q

•ARGO essential correcting basin scale salinity
•ARGO less important for Eq. Pacific, due to TAO/TRITON array

• impact of initialization in forecast skill:
 l   ARGO essential in many regions

Balmaseda et al, GRL, 2007; 2009



Data withholding experiments from BlueLink Australian operational
Forecast model (sequential assimilation):q

•Different data sets constrain different variables
•ARGO essential for sub-surface T, full profile S

t t li ittemperature salinity

Oke and Schiller, GRL, 2007



OCCA (ECCO) adjoint assimilation product:

Difference in variability of MOC relative to a base experiment with 
only hydrography as “data input”

B: hydrography only
SSH: altimetry
SST: satellite SSTSST: satellite SST
TS: Argo

Gael Forget, in prep



MODELS  DATA

- end users: data used for
initialization, verification,
context

- synthesis: model and data used            y
together

- feedback: model helps inform on
observing system design



Feedback from model to observing systems:

Interrogate model in manner consistent with observational network

Some examples:
Henson et al., BG, 2010

~40 years satellite Chl data needed to capture trend from natural~40 years satellite Chl data needed to capture trend from natural
variability

McKinley et al. (poster here, Nature Geoscience article in press)
25  f  2   h  d   b  k25 years for pCO2 measurements to show trend in ocean carbon sink?

Bennington et al, GBC, 2009
What does Chl variability tell us (or not) about pCO2, export?What does Chl variability tell us (or not) about pCO2, export?
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Observing System Simulation Experiment (OSSE)
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Observing System Simulation Experiment (OSSE)

state synthetic data
model “truth”

model 2 (different (
parameters): 
unconstrained

model 2 (different 
parameters): 
optimized

time
t1 t2 t3

Improvement with less noise in “synthetic data”Improvement with less noise in synthetic data



Observing System Simulation Experiment (OSSE)

state synthetic data
model “truth”

model 2 (different (
parameters): 
unconstrained

model 2 (different 
parameters): 
optimized

time
t1 t2 t3

Improvement with more “synthetic data”Improvement with more synthetic data



OSSE experiment to explore ARGO deployment objectives:
Model sub-sampled as for ARGO deployment, noise addedp p y

Residual at 847.5m for T for different amounts of “ARGO floats”
26% 10%42%

ARGO-like (300) less floats (100) more floats (900)

• ARGO adequate as a large scale, low frequency observing system

i il t d i bl  l  b fit• non-assimilated variables also benefit:
velocities improved relative to free model by 2 between 300 and 900    
floats

Forget et al, OM, 2008



Models feedback to observing strategies:M f g g

Some potential questions for OSSE forp q
biogeochemical autonomous network:

Wh t i  ti l ti l li  t t ?- What is optimal vertical sampling strategy?
- What are optimal combinations of mission

lifespan versus number sensors?lifespan versus number sensors?
- Which regions are most crucial to sample?



MODEL-DATA SYNTHESIS

D  l  h d• Data assimilation methods:
- brings together observations with the 4-D capabilities of models

to provide best “state estimates” of system
- powerful method to bring together diverse data setspowerful method to bring together diverse data sets
- ARGO essential for many metrics in the physical oceanography
system (but multiple observing systems needed)

- can be used to refute, compare and improve models

• Global biogeochemical data assimilation requires:
- better coverage of sub surface ocean
- multiple diverse datasetsp
- good physical state estimates

MODEL FEEDBACK TO OBSERVING SYSTEMS

• Models can be used to help us understand what observing systems
are capable of telling us

• Data assimilation frameworks can be used for OSSEs to help designp g
optimal observational network



Societal relevant questions:Societal relevant questions

1) it i  f i  t  h lth  1) monitoring of oceanic ecosystems health  
(e.g. changes on interannual and future timescales,

effects on fisheries))
2) monitoring of ocean carbon cycle 

(e.g. greenhouse gas emissions verification)

We will need data assimilated models to address 
these questions; 

But need autonomous network for essential 
measurements with which to constrain the model


