Air-sea gas transfer in the sea ice zone

Brice Loose, Ann Lovely, GSO

We're looking for the drains and backups of ocean carbon plumbing

McNeil et al., (2007)

GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 21, GB3011, doi:10.1029/2007GB002991, 2007

An empirical estimate of the Southern Ocean air-sea CO₂ flux

Ben I. McNeil, 1 Nicolas Metzl, 2 Robert M. Key, 3 Richard J. Matear, 4 and Antoine Corbiere 2

MCNEIL ET AL.: SOUTHERN OCEAN AIR-SEA CO2 FLUX

Bates et al., (2006)

Arrigo et al., (2010)

-4.9 -4.2 -3.5 -2.8 -2.1 -1.4 -0.7 0 0.7 Annual mean FCO₂ (mol m⁻² a⁻¹)

Full Article

Subduction and Shelf-Basin Interactions in the Arctic Ocean

Steele et al., (1995)

Polynyas, deep convection and CO₂ ventilation

Anderson et. al., 2009

Polynyas, deep convection and CO₂ ventilation

UNIVERSITY OF RHODE ISLAND GRADUATE SCHOOL OF OCEANOGRAPHY de Lavergne et al., (2014)

Seasonal forcing in a DIC transport model

C = Dissolved inorganic carbon Primary Production = based upon data from sea ice zone

Annual FCO₂ through ice zone

Springtime fluxes

Loose and Schlosser (2011)

Timing of ice breakup and spring bloom

Here's the punchline..

There are other first-order processes (in addition to wind) driving gas exchange in the ice zone

Contents

- 1. Differences between gas exchanges in the open ocean and the sea ice zone.
 - Turbulence and gas transfer from shear in the Ice-Ocean Boundary Layer.
 - Turbulence and gas transfer from buoyant convection in the Ice-Ocean
 Boundary Layer.
- 2. Results from GAPS laboratory experiment.

Gas exchange over open water

Gas transport pathways in the ice pack

- Shear in the ice-ocean boundary layer (IOBL) (McPhee, 1992; McPhee, 2008).
- Buoyant convection/stratification (Martinson, 1990; Morison et al., 1992)
- Surface roughening by short-period wind waves (Frew et al., 2004) and their interactions with ice floes (Squire et al., 1995);

$$F = k_{eff} \Delta C \quad k_{eff} = (1 - f)k_{ice} + (f)k$$

$k_{eff} = (f)k$

f is the fraction of open water

Buoyant convection/ stratification

Ice drag on the Ice-ocean boundary layer

$$\tau = (1 - f) \left(\tau_{skin-iw} + \tau_{form} \right) + (f) \left(\tau_{skin-aw} \right) (1 - W)$$

Steele et al., (1995)

Ice melt increases ice-water relative velocity

Water-ice relative velocities (U_{ice} – U_{water})

Geiger and Drinkwater, JGR (2005)

- Wind, ocean tides, inertial oscillations and other motions affect sea ice divergence.
- Sea ice divergence affects air sea fluxes, new ice production and thermohaline structure of upper ocean.

Buoyant convection

- J_{bo} = Surface buoyancy flux (W/kg).
- (f) and (1-f) weight the open water and ice covered flux terms, respectively.

GAPS Experiment at USACE CRREL

GAPS: (Gas Transfer through Polar Sea ice).

https://www.youtube.com/watch?v=yrXycJLWGpU

GAPS: (Gas Transfer through Polar Sea ice).

Water-ice relative velocities (U_{ice} – U_{water})

Steady state velocity field in experiment tank

Channel Velocity = 0.16 m/s

Comparison of velocity: model vs. measure

Shear-driven turbulence leads to k

No relationship between k and ice cover

Buoyant convection

Convective turbulence model

 $\varepsilon = (0.58 \cdot \text{Buoyancy} + 1.76 \cdot \text{Shear})$

Buoyancy losses and convection

Buoyancy losses and convection

All processes in the turbulence model

Reproduced from Zappa et al., (2007)

Returning to gas exchange over open water

Summary

- 1. Convection and Boundary-layer shear lead to gas exchange rates that are similar magnitude k as wind does (below 10 m/s).
- 2. The turbulence from (1) is additive with wind in its effect on k.
- 3. We need a way to measure the wind wave spectrum in SIZ and correlate to gas exchange.
- 4. We need more direct measurements of gas transfer velocity in the sea ice zone that correlate the magnitude with the processes.
- 5. Matlab code available at: <u>http://looselab.gso.uri.edu/?p=183</u>

Acknowledgements

- 1. ITP Program: John Toole, Rick Krishfield, Andrey Proshutinsky, Mary-Louise Timmermans and the rest of the team.
- 2. GAPS Collaborators: Peter Schlosser, Don Perovich, Wade McGillis Chris Zappa, Leonard Zabilansky, Scott Brown, Diana Hsueh, and Tom Morrell.

