

Accknowledgement

Funding: NIST, NSF, WHOI Green Tech Award

Collaborator:

Rich Camilli, WHOI; Kevin Kroeger, USGS Gareth Lawson, WHOI

Development Team:

Engineers: Fritz Sonnichsen, Al Bradley, Tom Lanagan,

Terry Hammar, Kevin Manganini, Norm Farr

Chemists: Katherine Hoering, Sophie Chu, Jacinta Edebeli,,

Lenna Quackenbush

CO₂ Invasion and Ocean Acidification (OA)

What is the signal we want to detect?

P17N: ΔC_{anthro} [μmol kg⁻¹]

20

15

10

-0.02

-0.03

-0.04

-0.05

-0.06

-0.05

-0.1

50°N

200

400

600

800

1000

Depth [m]

- ✓ OA is a relatively small signal in terms of what we can measure
- ✓ Cost to do this transect over two cruises:>\$3M

Chu, Wang, Lawson in prep

Latitude

New In-situ DIC and TA Sensors

Robotic Analyzer for the TCO₂ System (RATS). Sayles et al (2009, DSR), recent pH addition by W. Martin and D. McCorkle.

Moored Autonomous DIC (MADIC). Fassbender et al. 2015, ES&T.

Spectrophotometric Elemental Analysis System - DIC (SEAS-DIC). Liu et al. 2013, ES&T.

Channelized Optical System (CHANOS) for DIC and pH. Wang et al. 2015, ES&T.

Submersible Autonomous Moored Instrument for alkalinity (SAMI-alk). Spaulding et al. 2014, ES&T

Deep-Sea DuraFET pH

Net Ecosystem Productivity and Net Ecosystem Calcification

http://www.mbari.org/chemsensor/teamdurafet/

From W. McGillis

Carbon Sensor Development to Address Two Challenges

Challenge 1:

Requirement: Need to measure two of the four CO₂ parameters to fully define the CO₂ system; Which pair to choose makes difference

Analytical Errors (Best Practice)

Table 8. Estimates of the Analytical Precision and Accuracy of Measurements of pH, TA, TCO₂, and pCO₂

analysis	precision	accuracy	ref
pH (spectrophometric) TA (potentiometric) TCO ₂ (coulometric) f_{CO_2} (infrared)	± 0.0004	±0.002	42
	$\pm 1 \mu \mathrm{mol \ kg^{-1}}$	±3 μm ol kg ⁻¹	29
	$\pm 1 \mu \mathrm{mol \ kg^{-1}}$	±2 μm ol kg ⁻¹	96
	$\pm 0.5 \mu \mathrm{atm}$	±2 μatm	97

Calculation Errors

Problem: only pH and pCO₂ sensors are readily available, but DIC and TA sensors is much less mature

Millero 2007

Table 9. Estimated Probable Errors in the Calculated Parameters of the Carbonate System Using Various Input Measurements

input	pН	TΑ (μm ol kg ⁻¹)	TCO_2 (μm ol kg $^{-1}$)	fco2 (μatm)
pH-TA			±3.8	± 2.1
$pH-TCO_2$		±2.7		± 1.8
р $\mathrm{H}-f_{\mathtt{CO}_2}$		±21	±18	
f_{CO_2} -TCO $_2$	±0.0025	±3.4		
f_{CO_2} -TA	± 0.0026		±3.2	
TA-TCO2	±0.0062			±5.7

Carbon Sensor Development

Challenge 2:

Except pH, all other measurements have long response times (many minutes) → long measurement cycles → Not ideal for mobile platforms (AUV, ROV, gliders etc.) and highly dynamic environments (e.g. coastal oceans, estuaries)

DIC, pCO_2/fCO_2 methods: 5-15 minutes (CO_2 equilibrating or extracting processes)

TA method: ~10 minutes (titration)

<u>Development Strategy</u>: using spectrophotometric methods

- ✓ Simultaneous measurements of pH and DIC
- ✓ High-frequency, flow-through measurements

Advantages:

- ✓ Fully resolve the CO₂ system, with good calculation accuracy
- ✓ Sensitive
- ✓ Similar spectrophotometric principles (spec pH), modular
- ✓ Direct measurements of water, deep deployments

Channelized Optical System (CHANOS) for Simultaneous, In-situ Measurements of Seawater DIC and pH

- ☐ Syringe Pumps: precise reagent delivery, small reagent consumption; not continuous (time-series)
- ☐ Two oil filled J-boxes for two channels
 - Fluid handling sub-system
 - ✓ Pressure compensated
 - ✓ Protection
 - ✓ Independent channels

Woods Hole Oceanographic Institution

 $40 \times 20 \text{ cm}$

pH channel schematic (Flow-through method)

Detergent Reservoir

$$pH = pK_{II} + log \frac{[I^{2-}]}{[HI^{-}]}$$

$$pH = pK_{II} + log \frac{R - e_1}{e_2 - Re_3}$$

 $R = {}_{\lambda 2}A_I/{}_{\lambda I}A_{HI}$ (measured) e_I , e_2 , e_3 : molar absorbance ratios K_{II} : dissociation constant

Typical Principle of DIC Measurements for In-situ Sensors

High-frequency spectrophotometric DIC (pCO₂) measurement:

Countercurrent flow spectrophotometric DIC Method

$$\log(p \times \frac{[DIC]}{(K_0)_a}) = B(t) - \log(K_0)_i - \log\left(\frac{R - e_1}{1 - Re_3 / e_2}\right),$$

 $\log(p \times fCO_2)_a$

 $log(fCO_2)_i$

Calibration variables p – percentage equilibration B(t) – constant

(Modified from Byrne et al. 2002)

Advantages of Countercurrent flow

- ✓ Improve diffusion efficiency
- ✓ Partial to full CO₂ equilibrium on the fly
- ✓ Allow flow-through measurements and continuous recording
- ✓ Avoid using Teflon AF as optical cell (sometimes not stable)

Full equilibrium: ~70s

13

Under partial equilibration, response time is much faster

Intercept time ~22s → flushing time Response time <22s upper limit, Near continuous

CHANOS DIC calibration on temperature effect

Lab Calibration

In-situ Calibration

In-situ calibration using Certified Reference Materials (CRMs):

- ✓ Reduce lab calibration that may be different from the field.
- ✓ Ensure measurement quality
- ✓ Evaluate in-situ accuracy
- × Make the system complex

Woods Hole Oceanographic Institution

CHANOS In-situ Testing at the WHOI Dock

- ✓ Total ~2 months, 1st month functionality, 2nd month measurements
- ✓ Placed in a pelican case for antifouling
- ✓ Copper mesh filtering
- ✓ Co-deployed with CTD
- ✓ Discrete bottle sampling for DIC and pH

Data Comparison, Precision, and Accuracy

Sensor vs. bottle (1 σ difference): DIC: 0.8 \pm 5.2 μ mol/kg for DIC and pH -0.001 \pm 0.003

Summary and Comparison of CHANOS Measurements

	RATS	SEAS-DIC	MADIC	SAMI-alk	CHANOS
Parameters measured	DIC and pH	DIC	DIC	Alk	DIC and pH
Principle	Conductometric DIC; Spectrophotometri c pH	Spectrophotometric	Infrared	Tracer based spectrophotometri c	Both spectrophotometric
Measurement cycle time	Hourly	Preparation and equilibration ~9 min, measurement every minute afterwards for 50 min; repeat	~12 min	~12 min	Preparation 2-6 min, flow-through measurements every ~12s for ~6-8 min afterwards; repeat
Precision	±2.7 μmol kg ⁻¹ ; pH ±0.001?	±2 μmol kg ⁻¹	±5.0 μmol kg ⁻¹	±4.7 μmol kg ⁻¹	DIC ±2.5 μmol kg ⁻¹ pH ±0.0010
Accuracy (in situ)	±3.6 μmol kg ⁻¹ ; pH ±0.003?	±2 μmol kg ⁻¹	$\pm 6 - 7 \mu \text{mol}$ kg ⁻¹	–2.2 ± 13.1 μmol kg	DIC ±5.2 μmol kg ⁻¹ pH ±0.0024
Reported deployment time	8 weeks	~8 days	~8.5 months	~1 month	3 weeks
Calibration / quality control	Lab and in situ calibration with CRM	Lab calibration with CRM	Lab and in situ calibration with CO_2 gas	Lab and in situ calibration with CRM	Lab and in situ calibration with CRM
Deployment mode	Time-series	Time-series	Time-series	Time-series	Time-series

Under Development

□ A continuous in-situ DIC sensor for mobile platforms (e.g. AUVs, ROVs, CTD cast).

Go mobile!

The need for high-resolution measurements New project: Quantify highly variable DIC flux exported from intertidal salt marsh systems

Variability: daily tidal cycles, spring-neat tides, seasonal, episodic events

Variabilities of DIC Flux from Salt Marshes

Thanks for your attention