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Ocean acidification and the
Permo-Triassic mass extinction

M. O. Clarkson,'} S. A. Kasemann,® R. A. Wood,' T. M. Lenton,” 8. J. Daines,”
S. Richoz,® F. Ohnemueller,” A. Meixner,” S. W. Poulton,” E. T. Tipper®

Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism
for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification
event is lacking. We present a high-resolution seawater pH record across this interval,
using boron isotope data combined with a quantitative modeling approach. In the latest
Permian, increased ocean alkalinity primed the Earth system with a low level of
atmospheric CO; and a high ocean buffering capacity. The first phase of extinction

was coincident with a slow injection of carbon into the atmosphere, and ocean

pH remained stable. During the second extinction pulse, however, a rapid and large
injection of carbon caused an abrupt acidification event that drove the preferential loss

of heavily calcified marine biota.

he Permo-Triassic Boundary (PTB) mass
extinction, at ~252 million years ago (Ma),
represents the most catastrophic loss of
biodiversity in geological history and played
a major role in dictating the subsequent
evolution of modern ecosystems (7). The PTB ex-
tinction event spanned -60,000 years (2) and
can be resolved into two distinet marine extine-
tion pulses (7). The first occurred in the latest
Permian [Extinction Pulse 1 (EP1)) and was fol-
lowed by an interval of temporary recovery be-
fore the second pulse (EP2), which occurred in
the earliest Triassic. The direct cause of the mass
extinction is widely debated, with a diverse range
of overlapping mechanisms proposed, including
widespread water column anaxiz (4), euxinia (3),
global warming (6), and ccean acdidification (7).
Models of PTB ocean acidification suggest that
a massive and rapid release of CO, from Siberian
Trap volcanism acidified the ocean (7). Indirect
evidence for acidification comes from the inter-
pretation of faunal turnover records (3, 8), poten-
tial dissolution surfaces (9), and Ca isotope data
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(7). A rapid input of carbon is also pov.enua.lly
recorded in the negative carbon

The PTB in the Tethys is characterized by two
negative §*°C excursions interrupted by a short-
term positive event (70). There is no consensus as
to the cause of this “rebound” event and so we
instead focus on the broader §”°C trend. Qur §-°C
transect (Fig. 1B) starts in the Changhsingian
(Late Permian) with & gradual decreasing trend,
interrupted by the first negative shift in §C at
EP1 (at 53 m, ~251.96 Ma) (Figs. 18 and 2). This is
followed by the minor positive rebound event (at
54 m, ~25195 Ma) (Figs. 1B and 2) before the
minima of the second phase of the negative CIE
(58 to 60 m, ~-251.92 Ma) (Figs. 1B and 2) that
marks the PTB itself. After the CIE minimum,
§"C gradually increases to ~1.8 per mil (%) and
remains relatively stable during the earliest
Triassic and across EP2.

Our boron isotope record shows a different
pattern to the carbon isotope excursion. The
boron isotope ratio (§7B) is persistently low
(Fig. 1C) at the start of our record during the
late-Changhsingian, with an average of 109 =
0.9%o (1a). This is in agreement with §"'B values
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The Collaborative Project
Scripps-ASU-LSU

Mussel larvae growth experiments
Elemental changes (LA-ICPMS)

Calcium isotopes (MC-ICPMS)
B isotopes (SIMS)
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The Collaborative Project

* Rearing Mussel Larvae (Scripps)

Table 1. Experimental Conditions for Experiments A, B, and C Used to Rear Mussel Larvae of Mytilus californianus and M.

galloprovincialis
experiment [0,] temperature Ar [coi ] U/Ca,,
species (reps) pH: (umol kg™') °C) salinity  (umol kg™) (umol kg™') (umol mol™)
M. californianus A (3)° 8.04 165 3353 2235 155
A(3) 751 165 3353 2241 52
A (3)" 7.51 + 01§ 165 3353 2240 52+ 17
B (3) 790 223 159 3349 2228 115 1.09
B (3) T68 104 158 3349 2227 73 1.07
C(3) T64 230 163 3358 2233 68 117
C(3) 800 101 16.1 3354 2232 142 1.36
field” 808 232 165 3323 2228 156
M. gallaprovincialis B (2) 791 231 172 33.64 2250 124 1.20
B (2) 761 86 172 3365 2252 67 098
C(2) 7.59 234 169 33.60 2240 63 117
C(2) 795 87 17.1 33.62 2241 134 1.36

“[0;] was not controlled or measured during Expt. A. "Third treatment during Expt. A cycled pH by 0.3 units on a semidiurnal basis with a mean of
7.51. “Environmental data for field-cultured larvae were collected with seapHOx instrumentation that recorded pHy, [O,], temperature and salinity
every 15 min. [CO%7] was calculated from pH along with A, determined from a discrete sample taken at the beginning of the outplant.

Frieder et al., 2014
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Boron Work - SIMS
* |Instrumentation Cameca IMS 6f at ASU
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Figure 16.3 Sputtering of the surface of a sample by a primary beam
of oxygen (O°) or cesium (Cs") ions. By the impact of this high-energy
beam (typically 10-13 keV), elements constitutive of the sample

are ejected as mono- or pluriatomic secondary ions, electrons, and
neutrals. The secondary ions are then accelerated toward the mass
spectrometer of the ion probe. (Modified after Ireland, T.R., Adv.
Anal. Geochem., 2, 1-118, 1995.)

Rollion-Bard and Blamart, 2014



Boron Work - SIMS

* |Instrumentation Cameca 6f at ASU
* Problems: IMF and low precision
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LA-ICPMS: Elemental proxies




Mussel Larvae
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Thermo Element 2
ICP-MS (low-
resolution mode)
with a New Wave
Research UP-213
laser ablation unit
(at the University of
California Santa
Barbara)

30-pm-long by 80-
um-wide line at 40%
power, 10 Hz, and 8
Km/s scanning speed

Solution-based
dissolved CaCO,
reference material
(OTO), and two solid
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Frieder et al., 2014
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Future directions
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Standards: NIST612

e Commonly used
* Readily available
* Not matrix matched for CaCO,

GeoReM

[Downioad Data’

B in NIST NISTSRM612

Value Unit Origin Uncertainty Uncertainty Type Method Institution Last Name Year

I35 [wwiolmessurediz____ [os%cL____[AdCPMS[mbnmls  [WaxPlancinstiutfuerChemis  [[jochm kP [a0ia[Georan 7ie]
145 [uglo|measureal1s |9 [LACPMS[2i3nmNGVAG |MaxPlanckinstiutfuerChemie [[Jochum ___|KP.___[201a[Gooran 7159
[ [ugio|messureal14[os%GL [LAdCPMS|iosnmexaimer |unversititMamz____[ljoohm |k [20ia]Gooren 1oy
[543 [ugfo|compiod [17[oS%CL | [GeoReM pr.va 201:test port mass: mg range| Max-Planciinsttutfuer Chemie || Jochum kP |20 [Gooram 521
55 ogfeomotes | | | fowomwMpwemsoviues Mesrcknaatirchems Jeem ke __aomlceonon 0
[5473]po EETI N preforsdvaive ___[UnvorstyorwWaies ____[lpearce ___[NJG__|
fs2 Jwigleomptea] | | tormatinvaluss [NatlnalIntfuts ofSandards and echnotogy (W [Reed [e[rose[Georov 35 |

[35 [vgiglmeasured] |  ficraes | 0020202 [IEMNAPY
I [T T X AN T (VX | (TN <, c:ry of clement inhomogeneity in NIST SRM 610, 612, 614 and 616
Im-_@_m Li (mass 6)
36 |ugig| 4 |sMA |  |Presentdata, Nuclear reaction mi Homogeneous Moderately Grossly inhomogeneous
IE--_EE__ Microbeam analyses, inhomogeneous
s lnoon  Jicews] |
e e (S0uier (1-002 ) 1% | 50110 (1-002 1) < 1-20% | 15D (1-002 ) 510 20%
Maijor lithophile Al,O3, CaO, Na,0, SiO,
Lithophile Li, Be, B, Sc, Ti, V, Rb, Sr, Y, Zr, Nb, Cs, | Li (614), B (614), W (616)
Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Th,
Dy, Ho, Er, Tm, Yb, Ly, Hf, Ta, W, Th, U
librated with NI 1
g%% ca“: = N‘I’;TMs::l:‘l BOR20 Moderately chalcophile/siderophile | Cr (610), Ga (610), Ge (610), Ni (610), Cr, Cy, Co, Zn, Ga, Ge, Se (616), Cd (616), N
o ' Cu (610), Ag (610), T (610, 614), | As, Mo, Se, Cd, Ag, Sn, Sb, TI
m-mﬂ-m_ Co (612), b (612), C1, Cu, Co
| |ums |calibr. with NIST SRM610 Highly siderophile Rh (616), Pd (616), Pt (616), Pd (614), Rh (610, 612, 614), Re (614, 616), Pd (610, 612),
Au (616) Re (610, 612), Au (610,612, 614) | Pt(610, 612, 614)
Others (Eggins and Shelley 2002) | P?, C, K? Br, F Mn, Fe, S?, Te

Elements are grouped according to their geochemical behaviour. The inhomogeneity of some elements may be different in some glasses (sample names in
brackets). Elements not investigated in this paper are from Eggins and Shelley (2002). The table also contains approximate values for RSDiyhom (1-0.02 pg)
for test portion masses varying between 1 and 0.02 pg (corresponding to spot sizes between 80 and 25 pm in LAJICP-MS).

Jochum et al,, 2011



Standards: MACS-3

* “Matrix matched”
* Low boron concentration

* Heterogeneous
GeoReM

[Downioad Data’

B in USGS MACS-3

1195 [vgigjmessursdz3___ [1SiGMA ___[LadcPMS| [ChinaUnl
1755 |ugi|messurea[220  [1SiMA _[LadcPMS| [chinaUnl
1756 |ugjg|messurealz1  [1SiGMA_[LAdcPMS| [China Uni
[644 |ugi|messurealo1 [1SiMA_[LadcPMS| _[chinaUni
[641 |vgi|messurealo1  [1SiGMA_[LadcPMS| _[ChinaUni
lo|voimessurealo0s [1SiGMA [LAdcPMS| [Chinauni
1645 |ugig|messuredl005  [1SiGA [LAdcPMS| [ChinaUni
[o42 |vgig|messureal005  [1SIGMA [LAdcPMS| [China Uni
1605 |ugg|messurealo04  [1SiGMA_ [LadcPMS| [chinaUni
1605 |vgjg|messureal004  [1SiGMA_[LAdcPMS| [China Uni
1669 |ugg|messurealo0s  [1siA _ icoMs | [chinaunl
155 |ogigjmessured] | [LAdcPMS|iowmas ros. 213 nm _|Max-Plan
165 Jugi|messured] | [LAJcPMS|medium mass res. 213 m Max-Plan
121 Jogigjmessured] | [LAdcPMS|iowmas res. 193 nm___|Max-Plan
165 |vojg|messured] | [LAJGPMS|medium mass res. 183 m Max-Plan
159 |ogig|messurealzo  [os%CL  [AdceMS| [MaxPian
175 |vojg|messurealz7 oL [LAdcPMS[zo0nmts [MaxcPian
[o7 Jugg|messurea[ss  [oS%CL [LAdcPMS[213 nm NGYAG  [MaxcPian

SAMPLE slip B (ppm)
run 1 run2  run3
Seawater
Tavemier Cay, Florida +39.9* 4.56
Florida Bay +402  +39.9  +39.8 4.76
Long Island Sound +40.1 3.60
Aragonite
Montastrea! +24.7 61.9
Siderastrea A! +23.9¢ 50.3
B! +236 +228 62.4
Acropora A! +24.6 62.0
B! +23.0 62.2
Agaricia’ +23.5 50.4
Agaricia partial dissolution +23.9 -
Porites A! +240 +252 53.5
B! 4247  +242 52.0
Gardineria A* +24.2 59.3
B* +238 +234 69.5
Joulters Cay Qoids! +21.5 25.6
Joulters Cay Single Ooid’ 4222 28.2
Caicos Platform Ooids’ +21.2 245
Caicos Single Ooid? +22.1 245
Fungia® +247 4242 4245 56.6
Halimeda® +220 220 23.6
Codakia A® (mollusc) +19.1 10.9
R3 +21.2 13.8
Astrangia’ +248 +246 248 68.2
High-Mg Calcite
Echinoid A® +223 4231 43.6
B? +22.9 36.7
Goniolithon A? +224 54.8
B? 75.1
Encrusting Red Algae A! +23.0 50.9
B! 714
Calcite
Thecidellina AS (whole shell) +20.8 4222 25.7
B3 (outer shelh) +23.2  +21.8 48.8

Hemming and Hanson, 1992




Conclusions

Progress: LA-ICPMS can be used for the analysis
of (some) trace elements in single shell bivalve
arvae to trace pH exposure history (esp. U)

Pitfalls: B and Ca isotopes do not work

~uture directions: Comparative, multi-stressor
studies needed across different taxa

Future directions: Ecosystem response using
“deep time” studies

(Progress needed: Appropriate, readily available
standards are needed)
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