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Presentation 3: Linking measurements to processes

Bruce Menge
Oregon State University

Processes:

Individuals to population: growth, survival, calcification
Community: species interactions, disturbance, stress,
species composition
Ecosystem: nutrient cycling, food web dynamics, material
flows, carbon fixation, nitrification

Measurements:
Carbonate chemistry (pH, pCO,, total alkalinity), O,, T, salinity,
light (PAR) PISC®
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Outline: Linking Measurements to Processes
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Assuming an ecosystem context, what are the needs?

Field surveys (e.g., Feely et al. 2008)

Time series (e.g., HOTS, BATS, MBARI)

Reliable instrumentation (e.g., SeaFET)
Determination of impacts of OA on ecosystems

What are the biological responses?

Lab mesocosms — species (life history stages)
Observations along natural gradients
Field mesocosms

Current knowledge? Natural range of variability that organisms will experience and

can tolerate?

1.
2.
3.

Field data on OA
Laboratory mesocosms
Field results

a. CO2 vents

. Current paradigm for experiments linking biogeochemistry to processes?

1.
2.

4.

Field mesocosms

Comparative-experimental approach (C-EA): perform field experiments at
multiple locations varying in (e.g.) CO,, upwelling

Hybrid approaches: Linking C-EA, field measurements to mechanism, impact
a. Combining lab and field approaches

b. Using field-derived OA measures in mesocosms

c. Mechanistic links: genomics, genetics, molecular physiology, organismal
physiology in ecological and evolutionary context



Outline: Linking Measurements to Processes
Current gaps, issues, limitations

A. Assuming an ecosystem context, what are the needs?
1. Field surveys (e.g., Feely et al. 2008) — Need similar surveys along all
coasts
2. Time series (e.g., HOTS, BATS, MBARI) — Need more, greater
geographic coverage
3. Reliable instrumentation (e.g., SeaFET) — see X-Prize discussion
4. Determination of impacts of OA on ecosystems — Still the holy grail

B. What are the biological responses?

1. Lab mesocosms — species (life history stages) — Valuable first steps

2. Observations along natural gradients — Geographically limited, but
great insights

3. Field mesocosms — Better control of environment, expensive,
more realistic, but limitations

4. Comparative-experimental approach: perform field experiments at
multiple locations along environmental gradients (e.g., in CO,,
upwelling); co-location of sensors and biology — Powerful approach,
expensive, most useful in dynamic CO, environments




pH

pH

pH

8.4

82|

8.0

7.8

7.6

7.4

72

7.0

8.4

8.2

8.0

7.8

76 F

7.4

72

7.0

8.4

82 F

8.0 ¥YM

7.8

7.6

7.4 F

72

What do we know now? Field data on OA

A
[ Open Ocean
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Antarctic
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Recent datasets using SeaFETs focus
attention on geographic and temporal
variability among major habitats,
regions

Coastal variability >> open ocean

Temperate coastal > tropical

Striking spatial variation within
system type

Vent systems and coastal regions
offer good potential systems for
field investigation of ecosystem
impacts

Datasets still limited in length,
spatial coverage
Hofmann et al. 2011 PLoS One



What do we know now? Field data on OA

OMEGAS (Ocean Margin Ecosystem Group for Acidification Studies) Project
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Data from Chan et al. (2013) in prep.



What do we know now? Linking lab mesocosms to field

Using lab mesocosm studies to predict population performance at
limits of geographic range — Semibalanus balanoides in UK
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Findlay et al. 2010 Ecology



What do we know now? Obs along natural gradients
Field studies of CO, effects on coral communities: New Guinea
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Chlorophyll a concentration (ug L)

Current paradigms? Field mesocosms
Arctic pelagic ecosystem dynamics: mesocosm study

Nutrient limiting conditions
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Nutrient addition

Field mesocosms near
Svalbard: Early results

Minimal effect of CO,
before nutrient addition

After nutrient addition,
most measures stimulated
then inhibited by high

co,

At the community level,
diatoms were
outcompeted by smaller
phytoplankton

Short-term but
valuable approach

Riebesell et al. 2013 Biogeosciences



Current paradigms? Linking in situ pH to adaptive
potential using mesocosm experiments
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Across six sites from central OR to
southern CA,

Expression of genes likely responding
to acidification in S. purpuratus
changes upon exposure to high CO,.

Suggests genetic variation is
associated with local pH regime, and
thus, that adaptation potential
exists in this species

Pespeni et al. 2013 Int Comp Biology



Current paradigms? Hybrid/consortium approach

Response of the “ecosystem engineer,” Mytilus californianus, to OA
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Where should we go? Research Consortium Ap
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Algal Communities in Distress:
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