Processes:
Individuals to population: growth, survival, calcification
Community: species interactions, disturbance, stress, species composition
Ecosystem: nutrient cycling, food web dynamics, material flows, carbon fixation, nitrification

Measurements:
Carbonate chemistry (pH, pCO$_2$, total alkalinity), O$_2$, T, salinity, light (PAR)
Outline: Linking Measurements to Processes

A. Assuming an ecosystem context, what are the needs?
 1. Field surveys (e.g., Feely et al. 2008)
 2. Time series (e.g., HOTS, BATS, MBARI)
 3. Reliable instrumentation (e.g., SeaFET)
 4. Determination of impacts of OA on ecosystems

B. What are the biological responses?
 1. Lab mesocosms – species (life history stages)
 2. Observations along natural gradients
 3. Field mesocosms

C. Current knowledge? Natural range of variability that organisms will experience and can tolerate?
 1. Field data on OA
 2. Laboratory mesocosms
 3. Field results
 a. CO2 vents

D. Current paradigm for experiments linking biogeochemistry to processes?
 1. Field mesocosms
 2. Comparative-experimental approach (C-EA): perform field experiments at multiple locations varying in (e.g.) CO2, upwelling
 4. Hybrid approaches: Linking C-EA, field measurements to mechanism, impact
 a. Combining lab and field approaches
 b. Using field-derived OA measures in mesocosms
 c. Mechanistic links: genomics, genetics, molecular physiology, organismal physiology in ecological and evolutionary context
Outline: Linking Measurements to Processes

Current gaps, issues, limitations

A. Assuming an ecosystem context, what are the needs?
 1. Field surveys (e.g., Feely et al. 2008) – **Need similar surveys along all coasts**
 2. Time series (e.g., HOTS, BATS, MBARI) – **Need more, greater geographic coverage**
 3. Reliable instrumentation (e.g., SeaFET) – see X-Prize discussion
 4. Determination of impacts of OA on ecosystems – **Still the holy grail**

B. What are the biological responses?
 1. Lab mesocosms – species (life history stages) – **Valuable first steps**
 2. Observations along natural gradients – **Geographically limited, but great insights**
 3. Field mesocosms – **Better control of environment, expensive, more realistic, but limitations**
 4. Comparative-experimental approach: perform field experiments at multiple locations along environmental gradients (e.g., in CO₂ upwelling); co-location of sensors and biology – **Powerful approach, expensive, most useful in dynamic CO₂ environments**
Recent datasets using SeaFETs focus attention on geographic and temporal variability among major habitats, regions:

- Coastal variability >> open ocean
- Temperate coastal > tropical
- Striking spatial variation within system type
- Vent systems and coastal regions offer good potential systems for field investigation of ecosystem impacts

Datasets still limited in length, spatial coverage

Hofmann et al. 2011 PLoS One
What do we know now? Field data on OA

OMEGAS (Ocean Margin Ecosystem Group for Acidification Studies) Project

For all sites, this figure shows frequency of time at pH 7.7 or less

Data from Chan et al. (2013) in prep.
What do we know now? Linking lab mesocosms to field

Using lab mesocosm studies to predict population performance at limits of geographic range – *Semibalanus balanoides* in UK

Energy allocation in post-larvae likely to shift to metabolism & shell formation w. inc T and reduced pH

Result?
Trouble at both ends but esp. southern (reproduction reduced at T >~10°C; shell has more high Mg, dissolution likely greater)

Findlay et al. 2010 Est Coast Shelf Sci
Findlay et al. 2010 Ecology
What do we know now? Obs along natural gradients

Field studies of CO$_2$ effects on coral communities: New Guinea

Conclude: Communities in moderate CO$_2$ profoundly different from those in ambient CO$_2$.
Current paradigms? Field mesocosms
Arctic pelagic ecosystem dynamics: mesocosm study

Field mesocosms near Svalbard: Early results

Minimal effect of CO₂ before nutrient addition

After nutrient addition, most measures stimulated then inhibited by high CO₂

At the community level, diatoms were outcompeted by smaller phytoplankton

Short-term but valuable approach

Riebesell et al. 2013 Biogeosciences
Current paradigms? Linking in situ pH to adaptive potential using mesocosm experiments

Variation in gene expression along an upwelling/CO₂ coastal mosaic

Across six sites from central OR to southern CA,
Expression of genes likely responding to acidification in *S. purpuratus* changes upon exposure to high CO₂.

Suggests genetic variation is associated with local pH regime, and thus, that adaptation potential exists in this species

Pespeni et al. 2013 Int Comp Biology
Current paradigms? Hybrid/consortium approach

Response of the “ecosystem engineer,” *Mytilus californianus*, to OA

Larvae severely impacted by OA
(Gaylord et al. 2011 JEB)

Adult growth is affected by OA, but evidently POSITIVELY!

Time series from field deployed sensors

GIFET: pH & T
Fluorometer: chl-a

Low pH vs. Growth

Field transplants to measure growth

Model: Growth = 0.0005 + 0.00736*(Prop < 7.8)

Total $R^2 = 0.411$

Proportion of variance explained: Growth of *Mytilus californianus* (best fit model)
Where should we go? Research Consortium Approach

Intertidal oceanography

Nearshore oceanography

ACIDIC
Algal Communities in Distress: Impacts and Consequences

OA mesocosm experiments

Field experiments

Molecular physiological mechanisms & genetics

Modified, from Ann Russell & Gretchen Hofmann