Wetland Dissolved Organic Carbon (DOC) Fluxes at Small and Large Scales

Chris Osburn, Diana Oviedo-Vargas, Cindy Lebrasse, Del Bohnenstiehl, Roy He – NCSU
Ana Arellano, Tom Bianchi – UF
Eurico D’Sa, Ishan Joshi – LSU
Dong Ko – US NRL
Small Scale

- Unmanned Surface Vehicle (USV)
 - Bathymetry
 - ADCP
 - Chl, CDOM fluorescence
 - CTD

- Use SCHISM – salt fluxes
- Convert salt to DOC
Large Scale: Wetland fluxes through Apalachicola Bay and Barataria Bay
Large Scale: Wetland fluxes through Apalachicola Bay and Barataria Bay

Remote sensing from VIIRS

NCOM

7-day average DOC fluxes

3-component mixing model from optics & geochemistry: Seawater, River, Marsh

DOC export by source (g C m\(^{-2}\) yr\(^{-1}\))

DOC-normalized CDOM

DOC-normalized lignin

Field measurements

NCOM: Navy Coastal Ocean Model (for the LA-TX shelf)
Mixing model to apportion DOC to sources, apply to flux model

\[\text{DOC Flux} = \sum_{i=1}^{n} \sum_{k=1}^{m} \left[\text{DOC} (i, k) \times U(i, k) \right] dz(k) \, dx(i) \]

<table>
<thead>
<tr>
<th>Month</th>
<th>7-day average DOC flux ((x10^6 , \text{kg C} , \text{day}^{-1}))</th>
<th>Net annual DOC export ((x10^6 , \text{g C} , \text{m}^{-2} , \text{y}^{-1}))</th>
<th>Blue Carbon DOC export ((x10^6 , \text{g C} , \text{m}^{-2} , \text{y}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>0.144</td>
<td>8.35</td>
<td>0.14</td>
</tr>
<tr>
<td>BB</td>
<td>0.089</td>
<td>7.14</td>
<td>0.95</td>
</tr>
</tbody>
</table>